【题目】已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m﹣4或x≥8+m}(m<6).
(1)若m=2,求A∩(UB);
(2)若A∩(UB)=,求实数m的取值范围.
【答案】
(1)解:全集U=R,集合A={x|0<log2x<2}={x|1<x<4},
B={x|x≤3m﹣4或x≥8+m}(m<6);
当m=2时,B={x|x≤2或x≥10},
∴UB={x|2<x<10},
A∩(UB)={x|2<x<4};
(2)解:UB={x|3m﹣4<x<8+m},
当UB=时,3m﹣4≥8+m,解得m≥6,不合题意,舍去;
当UB≠时,应满足 ,
解得﹣4≤m≤ ,
∴实数m的取值范围是﹣4≤m≤ .
【解析】(1)m=2时,求出集合B,根据补集与交集的定义计算即可;(2)求出UB,讨论UB=和UB≠时,对应实数m的取值范围.
【考点精析】认真审题,首先需要了解交、并、补集的混合运算(求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法).
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈R,x2+2x﹣m=0;命题q:x∈R,mx2+mx+1>0.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题q为假命题,求实数m的取值范围;
(3)若命题p∨q为真命题,且p∧q为假命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=DC=2,点E为PC的中点,EF⊥PB,垂足为F点.
(1)求证:PA∥平面EDB;
(2)求证:PB⊥平面EFD;
(3)求异面直线BE与PA所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 (a>0,b>0)的两条渐近线与抛物线D:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,双曲线的离心率为 ,△ABO的面积为2 .
(1)求双曲线C的渐近线方程;
(2)求p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.
(1)求直线l的方程;
(2)若点A关于直线l的对称点为D,求△BCD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某几何体的三视图如右图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为( )
A.19+πcm2
B.22+4πcm2
C.10+6 +4πcm2
D.13+6 +4πcm2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y= sin(ωx+ )(ω>0).
(1)若ω= ,求函数的单调增区间和对称中心;
(2)函数的图象上有如图所示的A,B,C三点,且满足AB⊥BC. ①求ω的值;
②求函数在x∈[0,2)上的最大值,并求此时x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E,F分别为A1B1 , B1C1的中点,则直线BE与直线CF所成角的余弦值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com