精英家教网 > 高中数学 > 题目详情
15.已知cosθ-sinθ=$\frac{4}{3}$,则sinθcosθ=(  )
A.-$\frac{7}{9}$B.$\frac{7}{9}$C.-$\frac{7}{18}$D.$\frac{7}{18}$

分析 根据题意,对cosθ-sinθ=$\frac{4}{3}$的两边同时平方可得,(cosθ-sinθ)2=cos2θ+sin2θ-2sinθcosθ=1-2sinθcosθ=$\frac{16}{9}$,进而变形可得答案.

解答 解:根据题意,cosθ-sinθ=$\frac{4}{3}$,
则(cosθ-sinθ)2=cos2θ+sin2θ-2sinθcosθ=1-2sinθcosθ=$\frac{16}{9}$,
则有sinθcosθ=-$\frac{7}{18}$,
故选:C.

点评 本题考查同角三角函数基本关系式的运用,熟练应用公式是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=2sin(ωx-$\frac{π}{6}$)(ω>0)在区间(-π,π)上至少存在两个最值点,则ω的取值范围为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{Fn}满足F1=1,F2=1,Fn+2=Fn+1+Fn(n∈N*),求证:$\frac{1}{{F}_{1}}$+$\frac{1}{{F}_{2}}$+…+$\frac{1}{{F}_{n}}$+…<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设p:方程(m+1)x2+(2m-1)y2=1的图形是焦点在x轴上的椭圆;q:方程(m+1)x2+(m-3)y2=1的图形是双曲线,若p∨q为真命题,p∧q是假命题,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=3x2+1
(1)求函数的定义域;
(2)判断f(x)的奇偶性并证明;
(3)若f(a)=4,求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,求tan(2α-2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若α,β都是锐角,且cosα=$\frac{\sqrt{5}}{5}$,sin(α一β)=$\frac{3\sqrt{10}}{10}$,则cosβ=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+$\frac{1}{x}$,且此函数的图象过点A(2,$\frac{5}{2}$).
(1)求实数a的值;
(2)判断f(x)的奇偶性;
(3)讨论函数f(x)在[1,+∞)的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且$|{AK}|=\sqrt{2}|{AF}|$,则A点的横坐标为3.

查看答案和解析>>

同步练习册答案