精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=2x,x∈[0,3],则g(x)=f(2x)-f(x+2)的定义域为[0,1].

分析 根据复合函数定义域之间的关系进行求解即可.

解答 解:∵f(x)中x的取值范围是[0,3],
∴$\left\{\begin{array}{l}{0≤2x≤3}\\{0≤x+2≤3}\end{array}\right.$,得$\left\{\begin{array}{l}{0≤x≤\frac{3}{2}}\\{-2≤x≤1}\end{array}\right.$,
得0≤x≤1,
即函数的定义域为[0,1],
故答案为:[0,1]

点评 本题主要考查函数定义域的求解,根据复合函数定义域之间的关系建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$,
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l过点P(3,-2)且与椭圆$C:\frac{x^2}{20}+\frac{y^2}{16}=1$相交于A,B两点,则使得点P为弦AB中点的直线斜率为(  )
A.$-\frac{3}{5}$B.$-\frac{6}{5}$C.$\frac{6}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式logax-ln2x<4(a>0,且a≠1)对任意x∈(1,100)恒成立,则实数a的取值范围为(0,1)∪(${e}^{\frac{1}{4}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数$y={log_a}{x^2}$的零点为(  )
A.±1B.(±1,0)C.1D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知α是第四象限角,sin($\frac{5π}{2}$+α)=$\frac{1}{5}$,那么tan α等于(  )
A.-$\frac{2\sqrt{6}}{5}$B.-2$\sqrt{6}$C.2$\sqrt{6}$D.$\frac{2\sqrt{6}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆O:x2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(Ⅰ)求实数a、b间满足的等量关系;
(Ⅱ) 求线段PQ长的最小值;
(Ⅲ) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆:C:$\frac{{x}^{2}}{9}$+y2=1,点M(0,$\frac{1}{2}$).
(1)设P是椭圆C上任意的一点,Q是点P关于坐标原点的对称点,记λ=$\overrightarrow{MP}$•$\overrightarrow{MQ}$,求λ的取值范围;
(2)已知点D(-1,-$\frac{1}{2}$),E(1,-$\frac{1}{2}$),P是椭圆C上在第一象限内的点,记l为经过原点与点P的直线,s为△DEM截直线l所得的线段长,试将s表示成直线l的斜率k的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合 M={x||x|≤2,x∈R},N={x|x2≤4,x∈N},则(  )
A.M=NB.M?NC.M?ND.M∩N=∅

查看答案和解析>>

同步练习册答案