精英家教网 > 高中数学 > 题目详情
4.设双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,过点F1的直线与双曲线交于P,Q两点,且|QF1|-|PF1|=2a,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则此双曲线的离心率为(  )
A.3B.$\sqrt{5}$C.$\frac{5}{2}$D.$\frac{\sqrt{10}}{2}$

分析 设|PF1|=m,|QF1|=2a+m,则|PF2|=2a+m,|QF2|=4a+m,在直角△PF2Q中,利用勾股定理,求出m=a,即可得出结论.

解答 解:设|PF1|=m,|QF1|=2a+m,则|PF2|=2a+m,|QF2|=4a+m,
在直角△PF2Q中,(4a+m)2=(2a+m)2+(2a+2m)2,化简得m=a,
∴|PF1|=a,|PF2|=3a,|F1F2|=$\sqrt{10}$a,
∴e=$\frac{c}{a}$=$\frac{\sqrt{10}}{2}$.
故选D.

点评 本题考查双曲线的定义与性质,考查勾股定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若点P在$\frac{2π}{3}$角的终边上,且P的坐标为(-1,y),则y等于(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有下列命题:
①“m>0”是“方程x2+my2=1表示椭圆”的充要条件;
②“a=1”是“直线l1:ax+y-1=0与直线l2:x+ay-2=0平行”的充分不必要条件;
③“函数f (x)=x3+mx单调递增”是“m>0”的充要条件;
④已知p,q是两个不等价命题,则“p或q是真命题”是“p且q是真命题”的必要不充分条件.
其中所有真命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知矩阵M=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$,N=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,则矩阵MN的逆矩阵是$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知三点A(2,-3),B(4,3),C(5,m)在同一直线上,则m的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{xn}满足${x}_{1}=\frac{1}{2}$,且${x}_{n+1}=\frac{{x}_{n}}{2-{x}_{n}}(n∈{N}^{+})$
(1)用数学归纳法证明:0<xn<1;
(2)设${a}_{n}=\frac{1}{{x}_{n}}$,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于函数y=ex,曲线y=ex在与坐标轴交点处的切线方程为y=x+1,由于曲线y=ex在切线y=x+1的上方,故有不等式ex≥x+1,类比上述推理:对于函数y=lnx有不等式(  )
A.lnx≥x+1B.lnx≤1-xC.lnx≥x-1D.lnx≤x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.两个事件互斥是这两个事件对立的必要不充分(填充分不必要、必要不充分、充分必要条件、既不充分又不必要)条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“?a∈R,a2+1<2a”的否定为真命题(填真、假)

查看答案和解析>>

同步练习册答案