分析 首先求出f′(x),然后分别求出当f′(x)>0、f′(x)<0时x的取值范围,即可求出函数f(x)的单调区间.
解答 解:由于f(x)=exsinx,
所以f′(x)=exsinx+excosx=ex(sinx+cosx)=$\sqrt{2}$exsin(x+$\frac{π}{4}$),
当x+$\frac{π}{4}$∈(2kπ,2kπ+π),即x∈(2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$)时,f′(x)>0;
当x+$\frac{π}{4}$∈(2kπ+π,2kπ+2π),即x∈(2kπ+$\frac{3π}{4}$,2kπ+$\frac{7π}{4}$)时,f′(x)<0.
所以f(x)的单调递增区间为(2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$)(k∈Z),
单调递减区间为(2kπ+$\frac{3π}{4}$,2kπ+$\frac{7π}{4}$)(k∈Z).
点评 本题考查了函数的单调性问题,考查导数的应用,三角函数的性质,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
x | x1 | x2 | … | xn |
p | p1 | p2 | pn |
y | y1 | y2 | … | ym |
p | p${\;}_{1}^{′}$ | p${\;}_{2}^{′}$ | … | p${\;}_{m}^{′}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com