精英家教网 > 高中数学 > 题目详情
(2012•宝鸡模拟)如图,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求证:PC⊥平面ADE;
(2)求点D到平面ABC的距离.
分析:(1)利用线面垂直的性质与判定,证明PC⊥平面ADE,证出PC⊥AD,PC⊥AE即可;
(2)过D点作DF⊥BA垂直为E,由题意知DF⊥面ABC,即DF为所求距离,利用三角形的相似,可得结论.
解答:(1)证明:因为PA⊥平面ABC,所以PA⊥BC,
又AB⊥BC,且PA∩AB=A,所以BC⊥平面PAB,
因为AD?平面PAB,所以BC⊥AD.…(3分)
又AD⊥PB,BC∩PB=B,所以AD⊥平面PBC,
因为PC?平面PBC,所以PC⊥AD,
又PC⊥AE,AD∩AE=A,所以PC⊥平面ADE.…(6分)
(2)解:过D点作DF⊥BA垂直为E,

由题意知DF⊥面ABC,即DF为所求距离.…(8分)
由题设得DF∥PA,所以△BDE∽△BAP,即DF=
BD•PA
PB

又∵△BDA∽△BAP,∴
BD
AB
=
AB
PB

即BD=
AB2
PB
=
3
3
,∴BD=
1
3
PB

∴DF=
2
3
.…(11分)
即点D到平面ABC的距离为
2
3
.…(12分)
点评:本题考查线面垂直的性质与判定,考查点到面的距离,掌握线面垂直的性质与判定,作出点到面的距离的线段是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如下图所示:则函数f(x)的解析式为
f(x)=
2
sin(
π
8
x+
π
4
f(x)=
2
sin(
π
8
x+
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知实数x,y满足不等式组
y≤x
x+y≤2
y≥0
,则目标函数z=x+3y的最大值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)若函数f(x)=
2x,(x<3)
2x-m,(x≥3)
,且f(f(2))>7,则实数m的取值范围为
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宝鸡模拟)已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的通项公式an等于(  )

查看答案和解析>>

同步练习册答案