精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角是120°,且满足$\overrightarrow a=(-2\;,\;1)$,$\overrightarrow a•\overrightarrow b=-\sqrt{10}$,则|$\overrightarrow{b}$|=2$\sqrt{2}$.

分析 由题意可得向量$\overrightarrow a$的模长,由夹角公式可得.

解答 解:向量$\overrightarrow a$与$\overrightarrow b$的夹角是120°,且满足$\overrightarrow a=(-2\;,\;1)$,
∴|$\overrightarrow{a}$|=$\sqrt{(-2)^{2}+{1}^{2}}$=$\sqrt{5}$,
又∵$\overrightarrow a•\overrightarrow b=-\sqrt{10}$,
∴$\sqrt{5}$|$\overrightarrow{b}$|cos120°=-$\sqrt{10}$,
解得|$\overrightarrow{b}$|=2$\sqrt{2}$
故答案为:$2\sqrt{2}$

点评 本题考查平面向量的数量积和夹角,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A,B,C所对的边分别为a,b,c.若4sinAsinB-2cos(A-B)=$\sqrt{2}$.
(1)求角C的大小:
(2)已知$\frac{asinB}{sinA}=4$,△ABC的面积为8,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在复平面内,复数1+i与-1+3i分别对应向量$\overrightarrow{OA}$和$\overrightarrow{OB}$,其中O为坐标原点,则$|\overrightarrow{AB}|$=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{x-2}{x-1}$≥2的解集是:[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{$\frac{2n}{n-4π}$}中的最大项是(  )
A.第11项B.第12项C.第13项D.第14项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线:$y=\sqrt{1-{x^2}}$与直线y=x+b恰有1个公共点,则b的取值范围为[-1,1)∪{$\sqrt{2}$}..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.化简:sin$\frac{4π}{3}$cos$\frac{5π}{6}$tan$\frac{3π}{4}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数xi10152025303540
件数yi471215202327
其中i=1,2,3,4,5,6,7.
(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(2)求回归直线方程.(结果保留到小数点后两位)
参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)的定义域是(0,+∞),当x>1时f(x)>0,且f(xy)=f(x)+f(y);
(1)求f(1);
(2)证明:f(x)在定义域上是增函数;
(3)如果f(3)=1,解不等式f(x)+f(x-2)≥2.

查看答案和解析>>

同步练习册答案