分析 由题意可得向量$\overrightarrow a$的模长,由夹角公式可得.
解答 解:向量$\overrightarrow a$与$\overrightarrow b$的夹角是120°,且满足$\overrightarrow a=(-2\;,\;1)$,
∴|$\overrightarrow{a}$|=$\sqrt{(-2)^{2}+{1}^{2}}$=$\sqrt{5}$,
又∵$\overrightarrow a•\overrightarrow b=-\sqrt{10}$,
∴$\sqrt{5}$|$\overrightarrow{b}$|cos120°=-$\sqrt{10}$,
解得|$\overrightarrow{b}$|=2$\sqrt{2}$
故答案为:$2\sqrt{2}$
点评 本题考查平面向量的数量积和夹角,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
人数xi | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数yi | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com