【题目】已知函数有极值,且导函数的极值点是的零点.
(1)求关于的函数关系式,并写出定义域;
(2)证明:;
(3)若,这两个函数的所有极值之和不小于,求的取值范围.
【答案】(1),;(2)证明见解析;(3).
【解析】试题分析:(1)通过对,求导可知,进而再求导可知,通过令进而可知,的极小值点为,从而,整理可知,结合 有极值可知有两个不等的实根,进而可知;(2)通过(1)
构造函数,结合,可知,从而可得结论;(3)通过(1)可知的极小值,利用韦达定理及完全平方关系可知的两个极值之和为,进而问题转化为解不等式,因式分解即得结论.
试题解析:(1)由,得,当时,有极小值,的极值点是的零点,,又,故,有极值,故有实根,从而,即,当时,,故在R上是增函数,没有极值;
当时,有两个相异的实根,.
列表如下:
x | |||||
+ | 0 | – | 0 | + | |
极大值 | 极小值 |
故的极值点是.从而.因此,定义域为.
(2)由(1)知,.设,则.
当时,,从而在上单调递增.
因为,所以,故,即.因此.
(3)由(1)知,的极值点是,且,从而
,
记,所有极值之和为,
因为的极值为,所以,.
因为,于是在上单调递减.
因为,于是,故.因此a的取值范围为.
科目:高中数学 来源: 题型:
【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需求量 (单位:千万立方米)与年份 (单位:年)之间的关系.并且已知关于的线性回归方程是,试确定的值,并预测2018年该地区的天然气需求量;
(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:
为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查,求恰好有1辆车享受3.4万元补贴的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年5月,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购。为拓展市场,某调研组对甲、乙两个品牌的共享单车在5个城市的用户人数进行统计,得到如下数据:
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百万) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百万) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享单车用户人数超过5百万的城市称为“优质潜力城市”,否则“非优”,请据此判断是否有85%的把握认为“优质潜力城市”与共享单车品牌有关?
(Ⅱ)如果不考虑其它因素,为拓展市场,甲品牌要从这5个城市中选出3个城市进行大规模宣传.
①在城市Ⅰ被选中的条件下,求城市Ⅱ也被选中的概率;
②以表示选中的城市中用户人数超过5百万的个数,求随机变量的分布列及数学期望.
下面临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式: K2=,n=a+b+c+d
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com