精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若存在实数,使得上的奇函数,则称是位差值为的“位差奇函数”.

1)判断函数是否为位差奇函数?说明理由;

2)若是位差值为的位差奇函数,求的值;

3)若对任意属于区间中的都不是位差奇函数,求实数满足的条件.

【答案】1是位差奇函数,详见解析不是位差奇函数;(2;(3.

【解析】

1)根据“位差奇函数”的定义.考查fx+m)﹣fm=2x,hx)=gx+m)﹣gm)=2x+m2m2m2x1)是否为奇函数即可,

2)依题意,是奇函数,求出φ

3)记hx)=fx+m)﹣fm)=(x+m3+bx+m2+cx+m)﹣m3bm2cmx3+3m+bx2+3m2+2bm+cx.假设hx)是奇函数,则3m+b0,此时.故要使hx)不是奇函数,必须且只需

1)对于fx)=2x+1fx+m)﹣fm)=2x+m+1﹣(2m+1)=2x

∴对任意实数mfx+m)﹣fm)是奇函数,

fx)是位差值为任意实数m的“位差奇函数”;

对于gx)=2x,记hx)=gx+m)﹣gm)=2x+m2m2m2x1),

hx+h(﹣x)=2m2x1+2m2x1)=0,当且仅当x0等式成立,

∴对任意实数mgx+m)﹣gm)都不是奇函数,则gx)不是“位差奇函数”;

2)依题意,是奇函数,

kZ).

3)记hx)=fx+m)﹣fm)=(x+m3+bx+m2+cx+m)﹣m3bm2cm

x3+3m+bx2+3m2+2bm+cx

依题意,hx)对任意都不是奇函数,

hx)是奇函数,则3m+b0,此时

故要使hx)不是奇函数,必须且只需,且cR

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线处的切线方程;

2)当时,求函数的最小值;

3)已知,且任意,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点

(1)求实数的取值范围

(2)设上述的取值范围为若存在使对任意不等式恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,对任意的,都有.

(1)求数列的递推公式

(2)数列满足,求数列的通项公式;

(3)(2)的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种病毒感染性腹泻在全世界范围内均有流行,感染对象主要是成人和学龄儿童,寒冷季节呈现高发,据资料统计,某市111日开始出现该病毒感染者,111日该市的病毒新感染者共有20人,此后每天的新感染者比前一天的新感染者增加50人,由于该市医疗部分采取措施,使该病毒的传播速度得到控制,从第天起,每天的新感染者比前一天的新感染者减少30人,直到1130日为止.

1)设11日当天新感染人数为,求的通项公式(用表示);

2)若到1130日止,该市在这30日感染该病毒的患者共有8670人,11月几日,该市感染此病毒的新患者人数最多?并求出这一天的新患者人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD为BC边上的中线,cos B=,AD=,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的各项都是正数,且对于任意都有,记为数列的前项和.

1)计算的值;

2)求数列的通项公式;

3)设,若为单调递增数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若曲线在点处的切线与轴垂直,求实数的值;

2)若处取得极大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)判断函数的奇偶性,并说明理由

(2)讨论函数的零点个数

查看答案和解析>>

同步练习册答案