A. | a≥1 | B. | a≥2 | C. | a≥3 | D. | a≥4 |
分析 若?x1∈[1,3],?x2∈[1,4],使得f(x1)≥g(x2),可得f(x)=x+a在x1∈[1,3]的最小值不小于g(x)=x+$\frac{4}{x}$在x2∈[1,4]的最小值,构造关于a的不等式组,可得结论.
解答 解:当x1∈[1,3]时,由f(x)=x+a递增,
f(1)=1+a是函数的最小值,
当x2∈[1,4]时,g(x)=x+$\frac{4}{x}$,在[1,2)为减函数,在(2,4]为增函数,
∴g(2)=4是函数的最小值,
若?x1∈[1,3],?x2∈[1,4],使得f(x1)≥g(x2),
可得f(x)在x1∈[1,3]的最小值不小于g(x)在x2∈[1,4]的最小值,
即1+a≥4,
解得:a∈[3,+∞),
故选:C.
点评 本题考查的知识是一次函数和对勾函数的图象和性质,熟练掌握它们的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 7 | C. | 14 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com