分析 通过计算,确定f(n)=$\frac{2}{{n}^{2}}$,即可得出结论.
解答 解:令x=y=1,可得f($\sqrt{2}$)=$\frac{f(1)f(1)}{f(1)+f(1)}$=1,∴f($\sqrt{3}$)=$\frac{f(1)f(\sqrt{2})}{f(1)+f(\sqrt{2})}$=$\frac{2×1}{2+1}$=$\frac{2}{3}$
f(2)=$\frac{f(\sqrt{2})f(\sqrt{2})}{f(\sqrt{2})+f(\sqrt{2})}$=$\frac{1}{2}$,f($\sqrt{5}$)=$\frac{2}{5}$,f(3)=$\frac{2}{9}$,
∴f(n)=$\frac{2}{{n}^{2}}$
∴f(5)=$\frac{2}{25}$,
∵f(x)是偶函数,
∴f(-5)=f(5)=$\frac{2}{25}$.
故答案为:$\frac{2}{25}$.
点评 本题考查抽象函数,考查赋值法的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | (2,+∞) | C. | $({1,\root{3}{4}})$ | D. | $[{\root{3}{4},2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($-2,-\frac{3}{2}$) | B. | ($-\frac{3}{2},-1)$ | C. | ($-1,-\frac{1}{2}$) | D. | ($-\frac{1}{2},0$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(-1)<f(-2)<f(3) | B. | f(3)<f(-1)<f(-2) | C. | f(-2)<f(-1)<f(3) | D. | f(3)<f(-2)<f(-1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com