精英家教网 > 高中数学 > 题目详情

【题目】已知数列是公差不为0的等差数列,,数列是等比数列,且,数列的前n项和为

1)求数列的通项公式;

2)设,求的前n项和

3)若恒成立,求的最小值.

【答案】1;(2;(3

【解析】

1)设等差数列的公差为,等比数列的公比为,根据,列方程组解方程组可得;
2)分讨论,求
3)令,由单调性可得,由题意可得,易得的最小值.

解:(1)设等差数列的公差为,等比数列的公比为
则由题意可得,解得
数列是公差不为0的等差数列,
数列的通项公式
2)由(1)知

时,

时,

综合得:
3)由(1)可知

随着的增大而增大,
为奇数时,在奇数集上单调递减,
为偶数时,在偶数集上单调递增,

恒成立,

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调区间;

2)若函数的图象与轴相切,求证:对于任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,数列满足.

1)证明:是等比数列,并求

2)若数列中去掉与数列中相同的项后,余下的项按原顺序排列成数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:

使用寿命年数

5

6

7

8

总计

型出租车()

10

20

45

25

100

型出租车()

15

35

40

10

100

1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?

使用寿命不高于

使用寿命不低于

总计

总计

2)司机师傅小李准备在一辆开了年的型车和一辆开了年的型车中选择,为了尽最大可能实现年内(含年)不换车,试通过计算说明,他应如何选择.

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称角黍,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为

1求动点的轨迹的方程;

2过动点作曲线的两条切线,切点分别为 ,求证: 的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}的前n项和为SnS315a1a4a13成等比数列.

1)求数列{an}的通项公式;

2)求数列的前n项和Tn大于2020的最小自然数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,选择的两个非空子集,要使中最小数大于中最大的数,则不同选择方法有(

A.50B.49C.48D.40

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCDHKLE中,底面ABCD是边长为3的正方形,对角线ACBD相交于点O,点F在线段AH上且BE与底面ABCD所成角为.

1)求证:ACBE

2M为线段BD上一点,且,求异面直线AMBF所成角的余弦值.

查看答案和解析>>

同步练习册答案