【题目】某城市户居民的月平均用电量(单位:度),以, , , , , , 分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为, , , 的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
【答案】(1)直方图中的值是.(2)众数,中位数是.(3)户
【解析】试题分析:(I)由频率分布直方图性质可得求出的值
(II)由频率分布月平均用电量的众数为最高矩形上端的中点可得中位数在内,设中位数为,由得解;
(III)通过计算各段用户分别为25,15,10,5,抽取比例,可得月平均用电量在的用户中应抽取户.
试题解析:(I)由得: 所以直方图中的值.
(II)月平均用电量的众数是;
因为,所以月平均用电量的中位数在内,设中位数为,由得:
,所以月平均用电量的中位数是.
(III)月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,月平均用电量为的用户有户,抽取比例,
所以月平均用电量在的用户中应抽取户.
科目:高中数学 来源: 题型:
【题目】下列说法不正确的是( )
A. , 为不共线向量,若,则
B. 若, 为平面内两个不相等向量,则平面内任意向量都可以表示为
C. 若, ,则与不一定共线
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: 恒过定点,圆经过点和点,且圆心在直线上.
(1)求定点的坐标;
(2)求圆的方程;
(3)已知点为圆直径的一个端点,若另一个端点为点,问:在轴上是否存在一点,使得为直角三角形,若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的有__________.(写出所有正确说法的序号)
①已知关于的不等式的角集为,则实数的取值范围是.
②已知等比数列的前项和为,则、、也构成等比数列.
③已知函数(其中且)在上单调递减,且关于的方程恰有两个不相等的实数解,则.
④已知,且,则的最小值为.
⑤在平面直角坐标系中, 为坐标原点, 则的取值范围是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低硕族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | 120 | 0.6 | |
第二组 | 195 | ||
第三组 | 100 | 0.5 | |
第四组 | 0.4 | ||
第五组 | 30 | 0.3 | |
第六组 | 15 | 0.3 |
(1)补全频率分布直方图并求的值(直接写结果);
(2)从年龄段在的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为.
(1)求证:平面;
(2)求的长;
(3)在线段上是否存在点,使直线与垂直,如果存在,求线段的长,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶某中学研究性学习小组为调查市民喜欢观看体育节目是否与性别有关,随机抽取了55名市民,得数据如下表:
喜欢 | 不喜欢 | 合计 | |
男 | 20 | 5 | 25 |
女 | 10 | 20 | 30 |
合计 | 30 | 25 | 55 |
(1)判断是否有99.5%的把握认为喜欢观看体育节目与性别有关?
(2)用分层抽样的方法从喜欢观看体育节目的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求男市民人数的分布列和期望.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com