精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,P点的极坐标为 ,在平面直角坐标系中,直线l经过点P,斜率为
(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求 的值.

【答案】解:(Ⅰ)曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,直角坐标方程为x2+y2﹣4y=0; 直线l经过点P(0,3),斜率为 ,直线l的参数方程为 (t为参数);
(Ⅱ) (t为参数)代入圆的普通方程,整理,得:t2+ t﹣3=0,
设t1 , t2是方程的两根,∴t1t2=﹣3,t1+t2=﹣
= = =
【解析】(Ⅰ)曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,即ρ2cos2θ﹣4ρsinθ=0,即可写出曲线C的直角坐标方程;直线l经过点P(0,3),斜率为 ,即可写出直线l的参数方程;(Ⅱ) (t为参数)代入圆的普通方程,整理,得:t2+ t﹣3=0,利用参数的几何意义,求 的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,已知,边上的中线所在直线方程为的角平分线所在直线的方程为。求

(1)求顶点的坐标;

(2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 表示双曲线命题 表示椭圆

(1)若命题与命题 都为真命题 的什么条件

(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中的哪一个)

(2)若 为假命题 为真命题求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,动点M2t)(.

1)求椭圆的标准方程;

2)求以OM为直径且截直线所得的弦长为2的圆的方程;

3)设F是椭圆的右焦点,过点FOM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M在点N的下方),且|MN|=3.
(Ⅰ)求圆C的方程;
(Ⅱ)过点M任作一条直线与椭圆 相交于两点A、B,连接AN、BN,求证:∠ANM=∠BNM.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是(
A.直线
B.椭圆
C.抛物线
D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有关于x 的一元二次方程

(1)是从0,1,2,3,4五个数中任取的一个数,是从0,1,2,3四个数中任取的一个数,求上述方程有实数根的概率;

(2)是从区间中任取的一个实数,是从区间中任取的一个实数,求上述方程有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 (其中为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线.

1)求曲线的方程;

2若点为曲线上一点,过点作曲线的切线交圆于不同的两点(其中的右侧),已知点.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 分别为双曲线的左、右焦点, 为双曲线的左顶点,以 为直径的圆交双曲线某条渐近线于 两点,且满足,则该双曲线的离心率为________.

查看答案和解析>>

同步练习册答案