【题目】某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为9万元时,销售收入y的值.
注:①参考公式:线性回归方程系数公式;
②参考数据:
【答案】(1)详见解析(2)y=6.5x+17.5(3)当x=9时,预报y的值为y=76
【解析】
(1)根据表中所给的五对数据,得到五个有序数对,在平面直角坐标系中画出点,得到散点图.
(2)先做出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法做出线性回归方程的系数,再做出a的值,协会粗线性回归方程.
(3)把所给的x的值代入线性回归方程,求出y的值,这里的y的值是一个预报值,或者说是一个估计值.
解:(1)根据表中所给的五对数据,得到五个有序数对,在平面直角坐标系中画出点,得到散点图.
(2)∵=5,=50
∴==6.5
∴=-b=50-6.5×5=17.5
∴回归直线方程为y=6.5x+17.5
(3)当x=9时,预报y的值为y=9×6.5+17.5=76.
科目:高中数学 来源: 题型:
【题目】某个体经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:
投资A商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.65 | 1.39 | 1.85 | 2 | 1.84 | 1.40 |
投资B商品金额(万元) | 1 | 2 | 3 | 4 | 5 | 6 |
获纯利润(万元) | 0.25 | 0.49 | 0.76 | 1 | 1.26 | 1.51 |
该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算.请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:
其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )
①寿命在300-400的频数是90;
②寿命在400-500的矩形的面积是0.2;
③用频率分布直方图估计电子元件的平均寿命为:
④寿命超过的频率为0.3
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列随机事件:
①某射手射击一次,可能命中环,环,环,,环;
②一个小组有男生人,女生人,从中任选人进行活动汇报;
③一只使用中的灯泡寿命长短;
④抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;
⑤中秋节前夕,某市有关部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.
这些事件中,属于古典概型的是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱的各棱长均为2, 面,E,F分别为棱的中点.
(1)求证:直线BE∥平面;
(2)平面与直线AB交于点M,指出点M的位置,说明理由,并求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com