精英家教网 > 高中数学 > 题目详情

与直线平行的曲线的切线方程是(    )

A.                             B.

C.                              D.

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知动圆M经过点G(0,-1),且与圆Q:x2+(y-1)2=8内切.
(Ⅰ)求动圆M的圆心的轨迹E的方程.
(Ⅱ)以m=(1,
2
)
为方向向量的直线l交曲线E于不同的两点A、B,在曲线E上是否存在点P使四边形OAPB为平行四边形(O为坐标原点).若存在,求出所有的P点的坐标与直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•潍坊三模)如图,过抛物线C1:y=x2-1上一点P(不与顶点重合)的切  线l与曲线C2x2+
y24
=1
相交所得的弦为AB.
(1)证明:弦AB的中点在一条定直线l0上;
(2)过P点且平行于(1)中直线l0的直线与曲线C1的另一交点为Q,与l平行的直线与曲线C1交于E、F两点,已知∠EQP=45°,试判断△EQF的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):
(Ⅰ).求点M的轨迹方程;
(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆与已知圆O1(x+2)2+y2=1外切,与圆O2(x-2)2+y2=49内切,
(1)求动圆圆心的轨迹方程C;
(2)已知点A(2,3),O(0,0)是否存在平行于OA的直线 l与曲线C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市学军中学高考数学模拟试卷(文科)(解析版) 题型:解答题

如图,ABCD是边长为2的正方形纸片,沿某动直线l为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B都落在边AD上,记为B';折痕与AB交于点E,以EB和EB’为邻边作平行四边形EB’MB.若以B为原点,BC所在直线为x轴建立直角坐标系(如下图):
(Ⅰ).求点M的轨迹方程;
(Ⅱ).若曲线S是由点M的轨迹及其关于边AB对称的曲线组成的,等腰梯形A1B1C1D1的三边A1B1,B1C1,C1D1分别与曲线S切于点P,Q,R.求梯形A1B1C1D1面积的最小值.

查看答案和解析>>

同步练习册答案