精英家教网 > 高中数学 > 题目详情
14.下列说法正确的是(  )
A.“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要非充分条件
C.“a+b≠3”是“a≠1或b≠2”的充分非必要条件
D.“$\left\{\begin{array}{l}a+b>4\\ ab>4\end{array}\right.$”是“a>2且b>2”的充分必要条件

分析 A.原命题的否命题是“若x2≠1,则x≠1”,即可判断出正误;
B.由x2-5x-6=0解得x=-1或6,即可得出结论;
C.由a=1且b=2⇒a+b=3,且逆否命题为:若“a+b≠3”,则“a≠1或b≠2”,即可判断出正误.
D.由“a>2且b>2”⇒“$\left\{\begin{array}{l}a+b>4\\ ab>4\end{array}\right.$”,反之不成立,例如a=1,b=5,即可判断出正误.

解答 解:A.“若x2=1,则x=1”的否命题是“若x2≠1,则x≠1”,因此不正确;
B.由x2-5x-6=0解得x=-1或6.∴“x=-1”是“x2-5x-6=0”的充分非必要条件,因此不正确;
C.由a=1且b=2⇒a+b=3,且逆否命题为:若“a+b≠3”,则“a≠1或b≠2”,因此“a+b≠3”是“a≠1或b≠2”的充分非必要条件,正确.
D.由“a>2且b>2”⇒“$\left\{\begin{array}{l}a+b>4\\ ab>4\end{array}\right.$”,反之不成立,例如a=1,b=5,因此“$\left\{\begin{array}{l}a+b>4\\ ab>4\end{array}\right.$”是“a>2且b>2”的必要非充分条件,不正确.
故选:C.

点评 本题考查了充要条件的判定、命题之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知幂函数f(x)的图象过点(2,$\frac{1}{2}$),则f(4)的值是(  )
A.64B.4$\sqrt{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直,则实数m=0或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系中,已知两点A(x1,y1),B(x2,y2);x1,x2是一元二次方程2x2-2ax+a2-4=0两个不等实根,且A、B两点都在直线y=-x+a上.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$;
(2)a为何值时$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知$α∈R,α≠\frac{π}{2}+kπ({k∈Z})$,设直线l:y=xtanα+m,其中m≠0,给出下列结论:
①直线l的方向向量与向量$\overrightarrow a=({cosα,sinα})$共线;
②若$0<α<\frac{π}{4}$,则直线l与直线y=x的夹角为$\frac{π}{4}-α$;
③直线l与直线xsinα-ycosα+n=0(n≠m)一定平行;
写出所有真命题的序号①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)当x>3时,求函数y=$\frac{2{x}^{2}}{x-3}$的最小值.
(2)若x2-2ax+2≥0在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若曲线$\left\{\begin{array}{l}{x=2pt}\\{y=2p{t}^{2}}\end{array}\right.$,(t为参数)上异于原点的不同两点M1,M2所对应的参数分别是t1、t2(且t1≠t2),则弦M1M2所在直线的斜率是(  )
A.t1+t2B.t1-t2C.$\frac{1}{{t}_{1+}{t}_{2}}$D.$\frac{1}{{t}_{1-}{t}_{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设l,m是不同的直线,α,β,γ是不同的平面,则下列命题正确的是②.
①若l⊥m,m⊥α,则l⊥α或 l∥α          
②若l⊥γ,α⊥γ,则l∥α或 l?α
③若l∥α,m∥α,则l∥m或 l与m相交    
④若l∥α,α⊥β,则l⊥β或 l?β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项的和${S_n}={2^n}-a$(a∈R).则a8=128.

查看答案和解析>>

同步练习册答案