精英家教网 > 高中数学 > 题目详情
14.某四棱锥的三视图如图所示,该四棱锥的四个侧面的面积中最大的是(  )
A.3B.$2\sqrt{5}$C.6D.$3\sqrt{5}$

分析 由三视图得几何体是四棱锥并画出直观图,由三视图判断出线面的位置关系,并求出几何体的高和侧面的高,分别求出各个侧面的面积,即可得到答案.

解答 解:由三视图得几何体是四棱锥P-ABCD,如图所示:
且PE⊥平面ABCD,底面ABCD是矩形,AB=4、AD=2,
面PDC是等腰三角形,PD=PC=3,
则△PDC的高为$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
所以△PDC的面积为:$\frac{1}{2}$×4×$\sqrt{5}$=2$\sqrt{5}$,
因为PE⊥平面ABCD,所以PE⊥BC,
又CB⊥CD,PE∩CD=E,所以BC⊥面PDC,
即BC⊥PC,同理可证AD⊥PD,
则两个侧面△PAD、△PBC的面积都为:$\frac{1}{2}$×2×3=3,
侧面△PAB的面积为:$\frac{1}{2}$×4×$\sqrt{(\sqrt{5})^{2}+{2}^{2}}$=6,
所以四棱锥P-ABCD的四个侧面中面积最大是:6,
故选C.

点评 本题考查由三视图求几何体侧面的面积,由三视图正确复原几何体、判断出几何体的结构特征是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)满足:集合A={f(n)|n∈N*}中至少存在三个不同的数构成等差数列,则称函数f(x)是等差源函数.判断下列函数:
①y=log2x;
②y=2x
③y=$\frac{1}{x}$中,
所有的等差源函数的序号是(  )
A.B.①②C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD 中,PD⊥底面ABCD,AB∥DC,CD=2AB,AD⊥CD,E为棱PD的中点.
(Ⅰ)求证:CD⊥AE;
(Ⅱ)求证:平面PAB⊥平面PAD;
(Ⅲ)试判断PB与平面AEC是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$2\overrightarrow a-\overrightarrow b$夹角的余弦值为$\frac{5\sqrt{7}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,AB为半圆O的直径,D为弧BC的中点,E为BC的中点,求证:AB•BC=2AD•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线以△ABC的顶点B,C为焦点,且经过点A,若△ABC内角的对边分别为a,b,c.且a=4,b=5,$c=\sqrt{21}$,则此双曲线的离心率为(  )
A.$5-\sqrt{21}$B.$\frac{{\sqrt{21}+5}}{2}$C.$5+\sqrt{21}$D.$\frac{{5-\sqrt{21}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点C的坐标为(4,0),A,B,是抛物线y2=4x上不同于原点O的相异的两个动点,且OA⊥OB.
(Ⅰ)求证:点A,B,C共线;
(Ⅱ)若$\overrightarrow{AQ}=λ\overrightarrow{QB},(λ∈R)$,当$\overrightarrow{OQ}•\overrightarrow{AB}=0$时,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,若函数y=f(f(x)-2a)有两个零点,则实数a的取值范围是a≥$\frac{1}{2}$($\frac{1}{e}$+3)或a$<-\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求满足下列条件的m的值:
(1)直线l1:y=-x+1与直线l2:y=(m2-2)x+2m平行;
(2)直线l1:y=-2x+3与直线l2:y=(2m-1)x-5垂直.

查看答案和解析>>

同步练习册答案