分析 由已知利用诱导公式和同角三角函数的基本关系公式,可得tanα=2,利用弦化切思想,可得答案.
解答 解:∵cos($\frac{π}{2}$+α)=2sin($α-\frac{π}{2}$),
∴-sinα=-2cosα,
∴tanα=2,
∴$\frac{si{n}^{3}(π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$=$\frac{-si{n}^{3}α-cosα}{5sinα-3cosα}$=$\frac{-si{n}^{3}α-si{n}^{2}αcosα-co{s}^{3}α}{5si{n}^{3}α-3si{n}^{2}αcosα+5sinαco{s}^{2}α-3co{s}^{3}α}$=$\frac{-ta{n}^{3}α-ta{n}^{2}α-1}{5ta{n}^{3}α-3ta{n}^{2}α+5tanα-3}$=$\frac{-8-4-1}{40-12+10-3}$=-$\frac{13}{35}$
点评 本题考查的知识点是同角三角函数的基本关系公式,诱导公式,弦化切的思想技巧,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [0,2] | B. | [0,2) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)不是周期函数 | B. | f(x)是周期函数,且最小正周期为2 | ||
C. | f(x)是周期函数,且最小正周期为4 | D. | f(x)是周期函数,且4是它的一个周期 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{2}$ | B. | 4 | C. | 4$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com