精英家教网 > 高中数学 > 题目详情
如图,己知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0
)的离心率e=
2
2
,左、右焦点分别为F1,F2,抛物线y2=4
2
x的焦点恰好是该椭圆的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若斜率为k(k≠0)的直线与x轴、椭圆顺次交于A(2,0)、M、N三点.求证∠NF2F1=∠MF2A.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由抛物线y2=4
2
x可得焦点F2(
2
,0)
,为椭圆的一个顶点.可得a=
2
.又
c
a
=
2
2
,b2=a2-c2,即可得出.
(Ⅱ)由题意得,直线l的方程为y=k(x-2)且k≠0.与椭圆方程联立化为(1+2k2)x2-8k2x+8k2-2=0,设M(x1,y1),N(x2,y2).又F2(1,0).利用斜率计算公式与根与系数的关系只要证明kMF2+kNF2=0即可.
解答: (I)解:由抛物线y2=4
2
x可得焦点F2(
2
,0)
,为椭圆的一个顶点.
∴a=
2

c
a
=
2
2
,∴c=1.b2=a2-c2=1.
∴椭圆C的方程为
x2
2
+y2
=1.
(Ⅱ)证明:由题意得,直线l的方程为y=k(x-2)且k≠0.
联立
y=k(x-2)
x2+2y2=2
,化为(1+2k2)x2-8k2x+8k2-2=0,
由△>0可得k2
1
2
,解得-
2
2
<k<
2
2
,且k≠0.
设M(x1,y1),N(x2,y2).
∴x1+x2=
8k2
1+2k2
,x1x2=
8k2-2
1+2k2

又F2(1,0).
kMF2+kNF2
=
y1
x1-1
+
y2
x2-1
=
k(x1-2)
x1-1
+
k(x2-2)
x2-1
=
k[2x1x2-3(x1+x2)+4]
(x1-1)(x2-1)

其分母=k×[
2(8k2-2)
1+2k2
-
3×8k2
1+2k2
+4]
=
-4-8k2+4+8k2
1+2k2
=0,
kMF2+kNF2=0,
∴∠NF2A+∠MF2A=π.
∴∠NF2F1=∠MF2A.
点评:本题考查了抛物线与椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、角相等转化为直线斜率之间的关系,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

x,y满足约束条件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最优解不唯一,则实数a的值为(  )
A、1或-
1
2
B、
1
2
或-1
C、2或1
D、2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某专营店经销某商品,当售价不高于10元时,每天能销售100件,当价格高于10元时,每提高1元,销量减少3件,若该专营店每日费用支出为500元,用x表示该商品定价,y表示该专营店一天的净收入(除去每日的费用支出后的收入).
(1)把y表示成x的函数;
(2)试确定该商品定价为多少元时,一天的净收入最高?并求出净收入的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),过其右焦点F且与该双曲线一渐近线平行的直线分别与双曲线的右支和另一条渐近线交于A、B两点,且
FB
=2
FA
,则双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC是等腰三角形,∠ABC=120°,以A,B为焦点的双曲线过点C,则双曲线的离心率为(  )
A、1+
2
B、1+
3
C、
1+
2
2
D、
1+
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在梯形ABCD中,
AB
=2
DC
.
BC
 
.
=6,P为梯形ABCD所在平面上一点,且满足
AP
+
BP
+4
DP
=
0
DA
CB
=
.
DA
 
.
.
DP
 
.
,Q为边AD上的一个动点,则
.
PQ
 
.
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)为偶函数,x>0时,f(x)单调递增,P=f(-π),Q=f(e),R=f(
2
),则P,Q,R的大小为(  )
A、R>Q>P
B、Q>R>P
C、P>R>Q
D、P>Q>R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线x2+y+1=0与双曲线x2-
y2
b2
=1(b>0)的渐近线相切,则此双曲线的焦距等于(  )
A、2
2
B、2
3
C、4
D、2
5

查看答案和解析>>

同步练习册答案