精英家教网 > 高中数学 > 题目详情
3.在复平面内,复数${({1-\sqrt{2}i})^2}$对应的点P位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 展开完全平方式,得到复数${({1-\sqrt{2}i})^2}$对应的点P的坐标得答案.

解答 解:∵${({1-\sqrt{2}i})^2}$=$1-2\sqrt{2}i+(\sqrt{2}i)^{2}=-1-2\sqrt{2}i$,
∴复数${({1-\sqrt{2}i})^2}$对应的点P的坐标为(-1,-2$\sqrt{2}$),位于第三象限.
故选:C.

点评 本题考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.设函数$f(x)=cos(2x+\frac{π}{3})+1$,如下结论中正确的是②③⑤.(写出所有正确结论的编号):
①点$(-\frac{5}{12}π,0)$是函数f(x)图象的一个对称中心;
②直线x=$\frac{π}{3}$是函数f(x)图象的一条对称轴; 
③函数f(x)的最小正周期是π;
④函数f(x)在$[-\frac{π}{6},\frac{π}{3}]$上为增函数;
⑤将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,对应的函数是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在Rt△ACB中,∠ACB=90°,BC=2AC,分别以A、B为圆心,AC的长为半径作扇形ACD和扇形BEF,D、E在AB上,F在BC上.在△ACB中任取一点,这一点恰好在图中阴影部分的概率是(  )
A.$\frac{π}{8}$B.1-$\frac{π}{8}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,在Rt△ACB中,∠ACB=90°,AB=2AC,分别以A、B为圆心,AC的长为半径作扇形ACD和扇形BDE,D在AB上,E在BC上.在△ACB中任取一点,这一点恰好在图中阴影部分的概率是(  )
A.1-$\frac{{\sqrt{3}π}}{6}$B.$\frac{{\sqrt{3}π}}{6}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是根据x,y的观测数据(xi,yi)(i=1,2,…,10)得到的散点图,由这些散点图可以判断变量x,y具有相关关系的图是(  )
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{8}{27}$D.$\frac{12}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的极坐标方程为$\sqrt{3}ρcosθ+ρsinθ-1=0$,曲线C的极坐标方程为ρ=4.
(1)将曲线C的极坐标方程化为普通方程;
(2)若直线l与曲线交于A,B两点,求线段AB 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a,b是两条不同的直线,α,β是两个不同的平面,则下列四个命题错误的是(  )
A.若a⊥b,a⊥α,b?α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥β
C.若a⊥β,α⊥β,则a∥α或a?αD.若a∥α,α⊥β,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(3,1),则|PM|+|PF1|的最小值为9.

查看答案和解析>>

同步练习册答案