精英家教网 > 高中数学 > 题目详情
17.给出下列四个命题:
①有两个侧面是矩形的棱柱是直棱柱
②侧面都是等腰三角形的棱锥是正棱锥
③侧面都是矩形的直四棱柱是长方体
④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱
其中不正确的命题为①②③.

分析 根据直棱柱,正棱锥,正棱柱,长方体的几何特征,逐一分析四个结论的真假,可得答案.

解答 解:有两个侧面是矩形的棱柱不一定是直棱柱,故①错误;
侧面都是等腰三角形,但底面不是正多边形的棱锥不是正棱锥,故②错误;
侧面都是矩形的直四棱柱,底面不是矩形,不是长方体,故③错误;
有相邻两个侧面与底面垂直的棱柱是直棱柱,又由底面为正多边形,则棱柱为正棱柱,故④正确;
故不正确的命题为:①②③,
故答案为:①②③

点评 本题考查的知识点是直棱柱,正棱锥,正棱柱,长方体的几何特征,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知四棱锥P-ABCD的五个顶点都在球O的球面上,底面ABCD是矩形,平面PAD垂直于平面ABCD,在△PAD中,PA=PD=2,∠APD=120°,AB=2,则球O的表面积等于(  )
A.16πB.20πC.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.用二分法求函数f(x)=log2x+a-2x零点的近似值时,如果确定零点所处的初始区间为($\frac{1}{4}$,$\frac{1}{2}$),那么a的取值范围为(  )
A.(-∞,2)B.($\frac{5}{2}$,+∞)C.(2,$\frac{5}{2}$)D.(-∞,2)∪($\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若关于x的方程ax2+bx+c=0(a≠0)的两个实根为1或2,则函数f(x)=cx2+bx+a的零点为(  )
A.1,2B.-1,-2C.1,$\frac{1}{2}$D.-1,-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数y=f(x)为偶函数,且对任意x1、x2∈R均有f(x1+x2)=f(x1)+f(x2)+2x1x2+1
(1)求f(0)、f(1)、f(2)的值:
(2)求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列x1,x2,…,xn,…满足x1=$\frac{1}{3}$,xn+1=${{x}_{n}}^{2}$+xn(n∈N•),则$\frac{1}{{x}_{1}+1}$+$\frac{1}{{x}_{2}+1}$+…+$\frac{1}{{x}_{2013}+1}$的整数部分是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设一个半球的半径为R,则其内接圆柱的最大侧面积是πR2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.命题p:已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函数F(x)=f(x)+x-a有且仅有两个零点;命题q:在x∈[1,2]内,不等式x2+2ax-2>0恒成立,若p且q为真,求参数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)满足:f(x+y)=f(x)f(y)对任意实数x、y都成立,f(1)=$\frac{1}{2}$,当x>0时,0<f(x)<1.
(1)求f(-1)、f(-2)的值;
(2)求证:f(x)>0;
(3)若f(1-|2-t|)≤4时,不等式x2+tx-1≤0,求实数x取值集合.

查看答案和解析>>

同步练习册答案