精英家教网 > 高中数学 > 题目详情

【题目】2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:

非常困难

一般

男考生

20

30

女考生

40

10

(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;

(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.

【答案】(1)男考生 ;女考生 ;(2)

【解析】

1)由列联表得到男考生、女考生觉得全国2卷数学试卷非常困难的概率;

(2)由题设男考生、女考生觉得全国2卷在数学试卷非常困难的人数分別为,由(1)可知分别服从二项分布,然后再分别讨论4名考生中含男生和女生分别是多少,求概率.

解:(1)由题可知男考生觉得全国2卷数学试卷非常困难的概率为

女考生觉得全国2卷数学试卷非常困难的概率为.

(2)由题设男考生、女考生觉得全国2卷在数学试卷非常困难的人数分別为

.

记事件“恰有4名考生觉得全国2卷数学试卷非常困难”,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的一个侧面为等边三角形,且平面平面,四边形是平行四边形,.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,设.

(Ⅰ)求证:数列是等比数列;

(Ⅱ)若,求实数的最小值;

(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,在正三棱柱中,底面边长为,侧棱长为是棱的中点.

)求证:平面

)求二面角的大小;

)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系,曲线的参数方程为(其中为参数)曲线的普通方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.

1)求曲线和曲线的极坐标方程;

2)射线:依次与曲线和曲线交于两点,射线:依次与曲线和曲线交于两点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.若方程有且只有两个不同的实根,则实数的取值范围为 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,平面,点在线段上,且,.

1)试用空间向量证明直线与平面不平行;

2)设平面与平面所成的锐二面角为,若,求的长;

3)在(2)的条件下,设平面平面,求直线与平面的所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100)绘制了如下茎叶图:

(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;

(2)50名学员满意度评分的中位数,并将评分不超过、超过分别视为基本满意”、“非常满意”两个等级.

(i)利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?

(ii)根据茎叶图填写下面的列联表:

并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,点是圆上的动点,点,线段的垂直平分线交点.

(1)求点的轨迹的方程;

(2)过点作斜率不为0的直线与(1)中的轨迹交于两点,点关于轴的对称点为,连接轴于点,求

查看答案和解析>>

同步练习册答案