精英家教网 > 高中数学 > 题目详情

【题目】解答题。
(1)求椭圆 的长轴和短轴的长、离心率、焦点和顶点的坐标.
(2)求焦点在y轴上,焦距是4,且经过点M(3,2)的椭圆的标准方程.

【答案】
(1)解:∵椭圆方程为

∴a=2,b=1,c= =

因此,椭圆的长轴的长和短轴的长分别为2a=4,2b=2,

离心率e= = ,两个焦点分别为F1(﹣ ,0),F2 ,0),

椭圆的四个顶点是A1(﹣2,0),A2(2,0),B1(0,﹣1),B2(0,1)


(2)解:由焦距是4可得c=2,且焦点坐标为(0,﹣2),(0,2).

由椭圆的定义知:2a= + =8,

∴a=4,b2=a2﹣c2=16﹣4=12.

又焦点在y轴上,∴椭圆的标准方程为


【解析】(1)由椭圆方程为 ,可得a,b,c,即可得出;(2)利用椭圆的定义可得:a,即可得出b2=a2﹣c2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分别求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(2,3)、B(4,1),直线l:x+2y﹣2=0,在直线l上求一点P.
(1)使|PA|+|PB|最小;
(2)使|PA|﹣|PB|最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果执行如图的程序框图,若输入n=6,m=4,那么输出的p等于(
A.720
B.360
C.240
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1 , x2都有等式f(x1x2)=f(x1)+f(x2)成立.
(1)求f(1)的值.
(2)判断f(x)的奇偶性并证明.
(3)若f(4)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(3x+1)+f(﹣6)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】种子发芽率与昼夜温差有关.某研究性学习小组对此进行研究,他们分别记录了3月12日至3月16日的昼夜温差与每天100颗某种种子浸泡后的发芽数,如下表:

(I)从3月12日至3月16日中任选2天,记发芽的种子数分别为c,d,求事件“c,d均不小于25”的概率;

(II)请根据3月13日至3月15日的三组数据,求出y关于x的线性回归方程

(III)若由线性回归方程得到的估计数据与实际数据误差均不超过2颗,则认为回归方程是可靠的,试用3月12日与16日的两组数据检验,(II)中的回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;

(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;

(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|< )的图象与y轴的交点为( ),它在y轴右侧的第一个最高点和最低点分别为(x0 , 3),(x0+2π,﹣3).
(1)求函数y=f(x)的解析式;
(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(3)求这个函数的单调递增区间和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点m是直线l: x﹣y+3=0与x轴的交点,将直线l绕点m旋转30°,求所得到的直线l′的方程.

查看答案和解析>>

同步练习册答案