精英家教网 > 高中数学 > 题目详情

【题目】某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.

高一学生学习时间的频数分布表(学习时间均在区间内):

学习时间

频数

3

1

8

4

2

2

高二学生学习时间的频率分布直方图:

(1)求高二学生学习时间的频率分布直方图中的并根据此频率分布直方图估计该校高二学生学习时间的中位数

(2)利用分层抽样的方法,从高一学生学习时间在的两组里随机抽取再从这人中随机抽取求学习时间在这一组中至少有人被抽中的概率.

【答案】(1),3.8;(2)

【解析】分析:(1)根据评率分布直方图的特征各直方图的面积之和为1可得a值;(2)根据分层抽样定义可得:从高一学生学习时间在中抽取人,从高一学生学习时间在中抽取人,

然后根据古典概型计算公式可得结论.

详解:

(1)由图可知,学生学习时间在区间内的频率为

内的频率为,所以

设中位数为,则,解得

即该校高二学生学习时间的中位数为.

(2)根据分层抽样,从高一学生学习时间在中抽取人,从高一学生学习时间在中抽取人,从这人中随机抽取人共有种情况,其中学习时间在这一组中没人被抽中的有种情况,设在这一组中至少有人被抽中的事件为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱 的所有棱长均为2, 中点.

(Ⅰ)求证: 平面
(Ⅱ)若 ,求平面 与平面 所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2015年一交警统计了某路段过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(3)试根据(2)求出的线性回归方程,预测在2016年该路段路况及相关安全设施等不变的情况下,车速达到110时,可能发生的交通事故次数.

(附:,其中为样本平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0 , 函数g(x)=cos(ω0x﹣ )的单调递增区间为(
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,若对任意都有为常数)成立,则称为“等差比数列”,下面对“等差比数列” 的判断:①不可能为;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为(其中,且)的数列一定是等差比数列,其中正确的判断是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的前n项和为Sn , 且Sn满足n(n+1)Sn2+(n2+n﹣1)Sn﹣1=0(n∈N*),则S1+S2+…+S2017=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P(x,y)(其中y )到x轴的距离比它到点F(0,1)的距离少1.
(1)求动点P的轨迹方程;
(2)若直线l:x-y+1=0与动点P的轨迹交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 为坐标原点, 是椭圆 上的两个动点,满足直线 与直线 关于直线 对称.
(1)证明直线 的斜率为定值,并求出这个定值;
(2)求 的面积最大时直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 的圆心在直线 上,且圆 经过点 .
(1)求圆的标准方程;
(2)直线 过点 且与圆 相交,所得弦长为4,求直线 的方程.

查看答案和解析>>

同步练习册答案