【题目】已知函数,则
()函数定义域为__________.
()函数导函数为__________.
()对函数单调研究如下
____
()设函数则
函数的最大值为__________.
(5)函数极值点共__________个,(6)其中极小值点有__________个.
(7)若关于的方程恰有三个不相同的实数解,则的取值范围为__________.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的对称轴方程;
(2)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若, , 分别是△三个内角, , 的对边, , ,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 一枚骰子掷一次得到2点的概率为,这说明一枚骰子掷6次会出现一次2点
B. 某地气象台预报说,明天本地降水的概率为70%,这说明明天本地有70%的区域下雨,30%的区域不下雨
C. 某中学高二年级有12个班,要从中选2个班参加活动,由于某种原因,一班必须参加,另外再从二至十二班中选一个班,有人提议用如下方法:掷两枚骰子得到的点数是几,就选几班,这是很公平的方法
D. 在一场乒乓球赛前,裁判一般用掷硬币猜正反面来决定谁先打球,这应该说是公平的
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:
资源 消耗量 产品 | 甲产品(每吨) | 乙产品(每吨) | 资源限额(每天) |
煤() | 9 | 4 | 360 |
电力() | 4 | 5 | 200 |
劳力(个) | 3 | 10 | 300 |
利润(万元) | 7 | 12 |
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.
(1)证明:PE⊥FG;
(2)求二面角PADC的正切值;
(3)求直线PA与直线FG所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中, 是的中心, 分别是线段上的动点,且, .
(Ⅰ)若直线平面,求实数的值;
(Ⅱ)若,正方体的棱长为2,求平面和平面所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播2017年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.
组号 | 分组 | 频数 |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
(1)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数;
(2)现从融合指数在和内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,底面为正三角形, 底面,且, 是的中点.
(1)求证: 平面;
(2)求证:平面平面;
(3)在侧棱上是否存在一点,使得三棱锥的体积是?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com