精英家教网 > 高中数学 > 题目详情
已知x>0,y>0,且x+y+xy=2,则xy的最大值为
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用基本不等式的性质、一元二次不等式的解法即可得出.
解答: 解:∵x>0,y>0,且x+y+xy=2,
∴2
xy
+xy≤2,当且仅当x=y=
3
-1时取等号.
xy
=t,t>0,
则t2+2t-2≤0
解得0<t≤
3
-1.
则xy的最大值为
3
-1.
故答案为:
3
-1.
点评:本题考查了基本不等式的性质、一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2
+…+
1
2n
an
=2n+5,求数列{an}的通项公式和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x
-xm,且f(4)=-
7
2
,求:
(1)m的值;
(2)f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

把点P(3,5)按向量
a
(4,5)平移至点P′,则P′的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线c:
x2
4
-
y2
12
=1,M(x,y)是平面直角坐标系上的一个动点,点M到直线x=4的距离与点M到点D(1,0)的距离之比恰为双曲线C的离心率,记动点M的轨迹为曲线C,
(1)斜率为
1
2
的直线l与曲线C交于A、B两个不同点,若直线l不过点P(1,
3
2
),设直线PA、PB的斜率分别为kPA、kPB,求kPA+kPB的数值;
(2)试问:是否存在一个定圆N,与以动点M为圆心,以MD为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙M:x2+y2-4x-8y+16=0,直线l:(1+λ)x+(1-λ)y-6=0(λ∈R).
(Ⅰ)求证:对任意λ∈R,都有直线l与⊙M相交;
(Ⅱ)当λ=2时,求直线l被⊙M截得的弦长;
(Ⅲ)已知点N(3,1),在⊙M内(包括圆周)任取一点P,记事件K为“点P与点N(3,1)所确定的直线到点M的距离不大于1”,求事件K发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
x
-1,1),
b
=(1,
1
y
)(x>0,y>0),若
a
b
,则x+4y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了改善同学们的就餐环境,学校决定新购进1200张餐桌和2400条桌椅(1张餐桌配2条餐椅),某车间接到了这批桌椅的生产任务,要求在30天内完成交货,已知该车间有甲、乙两个小组,甲组有24个工人,乙组有18个工人,无论甲组还是乙组,每个工人每天均能生产餐桌2张或餐椅3条,车间主任安排甲组专门生产餐桌,乙组专门生产餐椅.
(1)甲组每天可生产餐桌
 
张,甲组完成这批餐桌的生产任务需要
 
天;
(2)为了提高效率,车间主任准备从甲组抽调若干工人到乙组,使甲乙两组每天生产出来的餐桌和桌椅配套,问:车间主任应从甲组抽调多少工人到乙组;
(3)你认为该车间能在规定时间内按时交货吗?如果能,请求出最快的交货时间;如果不能,你认为至少还需要从其他车间调进几个具有相同生产能力的工人?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>0},B={x|x≥1},则A∩(∁RB)等于(  )
A、{x|x>1}
B、{x|x>0}
C、{x|0<x<1}
D、{x|x<1}

查看答案和解析>>

同步练习册答案