【题目】已知函数在处取得极小值.
(1)求实数的值;
(2)若函数存在极大值与极小值,且函数有两个零点,求实数的取值范围.(参考数据:,)
【答案】(1)或(2)
【解析】
(1)根据极值的定义,求出或,再对的两种取值分别进行验证;
(2)由第(1)问先确定,得到,利用导数研究函数的单调性,即函数在上单调递增,在上单调递减,再结合零点存在定理的条件,得到参数的取值范围.
解:(1)由题意得.
因为函数在处取得极小值,
依题意知,解得或.
当时,,若,,则函数单调递减,
若,,则函数单调递增,
所以,当时,取得极小值,无极大值,符合题意.
当时,,若或,,则函数单调递增;
若,,则函数单调递减,所以函数在处取得极小值,处取得极大值,符合题意,
综上,实数或.
(2)因为函数存在极大值与极小值,所以由(1)知,.
所以,.
当时,,故函数在上单调递增,
当时,令,则,所以当或时,,单调递增,
当时,,单调递减,
因为,
,所以当时,,故在上单调递减.
因为函数在上有两个零点,所以,所以.
取,;
取,,
所以,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个x,y都小于1的正实数对,再统计其中x,y能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试,若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(1)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(2)该校推荐选拔测试成绩在110以上的学生代表学校参加市知识竞赛,为了了解情况,在该校推荐参加市知识竞赛的学生中随机抽取2人,求选取的两人的选拔成绩在频率分布直方图中处于不同组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求异面直线A1B与AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】至2018年底,我国发明专利申请量已经连续8年位居世界首位,下表是我国2012年至2018年发明专利申请量以及相关数据.
总计 | ||||||||
年代代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申请量(万件) | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
注:年代代码1~7分别表示2012~2018.
(1)可以看出申请量每年都在增加,请问这几年中那一年的增长率达到最高,最高是多少?
(2)建立关于的回归直线方程(精确到0.01),并预测我国发明专利申请量突破200万件的年份.
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(α为参数)经过伸缩变换得到曲线C2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系.
(1)求C2的普通方程;
(2)设曲线C3的极坐标方程为,且曲线C3与曲线C2相交于M,N两点,点P(1,0),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如下:
甲公司某员工A | 乙公司某员工B | |||||||||||||
3 | 9 | 6 | 5 | 8 | 3 | 3 | 2 | 3 | 4 | 6 | 6 | 6 | 7 | 7 |
0 | 1 | 4 | 4 | 2 | 2 | 2 |
每名快递员完成一件货物投递可获得的劳务费情况如下:
甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;
(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;
(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com