精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax2+lnx,f1(x)=$\frac{1}{6}$x2+$\frac{4}{3}$x+$\frac{5}{9}$lnx,f2(x)=$\frac{1}{2}$x2+2ax,a∈R.若f(x)<f2(x)在区间(1,+∞)上恒成立,求a的取值范围.

分析 先令p(x)=f(x)-f2(x)=(a-$\frac{1}{2}$)x2-2ax+lnx<0,对x∈(1,+∞)恒成立,利用导数求出p(x)在区间(1,+∞)上是减函数,从而得出:要使p(x)<0在此区间上恒成立,只须满足p(1)=-a-$\frac{1}{2}$≤0,由此解得a的范围即可.

解答 解:令$p(x)=f(x)-{f_2}(x)=(a-\frac{1}{2}){x^2}-2ax+lnx$<0,对x∈(1,+∞)恒成立,
因为$p'(x)=(2a-1)x-2a+\frac{1}{x}=\frac{{(2a-1){x^2}-2ax+1}}{x}=\frac{(x-1)[(2a-1)x-1]}{x}$(*)
令p′(x)=0,得极值点x1=1,${x_2}=\frac{1}{2a-1}$,
①当$\frac{1}{2}<a<1$时,有x2>x1=1,即$\frac{1}{2}<a<1$时,在(x2,+∞)上有p′(x)>0,
此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;
②当a≥1时,有x2<x1=1,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;
③当$a≤\frac{1}{2}$时,有2a-1≤0,此时在区间(1,+∞)上恒有p′(x)<0,
从而p(x)在区间(1,+∞)上是减函数;
要使p(x)<0在此区间上恒成立,只须满足$p(1)=-a-\frac{1}{2}≤0$$⇒a≥-\frac{1}{2}$,
所以$-\frac{1}{2}≤a≤\frac{1}{2}$.
综上可知a的范围是$[{-\frac{1}{2},\frac{1}{2}}]$.

点评 本题主要考查不等式恒成立问题,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某车间在两天内,每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部每天要在生产的10件产品中随意抽取4件进行检查,若发现有次品,则当天的产品不能通过.
(I)求两天全部通过检查的概率;
(Ⅱ)若厂内对该车间生产的产品质量采用奖惩制度,两天全不通过检查罚300元,通过1天,2天分别奖300元、900元.求该车间在这两天内得到奖金X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x)=x-2lnx+2a,则f(x)在(0,+∞)上的最小值是2-2ln2+2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1、2,AB=4.
(1)证明:PQ⊥平面ABCD;
(2)求异面直线AQ与PB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$\sqrt{[lo{g}_{(2+\sqrt{3})}(2-\sqrt{3})+\sqrt{2}]^{2}}$+|$\sqrt{2}$-3|的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一条直线经过点P(2,3)
(1)若此直线是一条入射光线,射在直线l:x+y+1=0,反射后经过点Q(1,1),求反射光线所在直线的方程;
(2)若直线与x轴,直线x=-1围成的三角形的面积是18,且不过第三象限,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在直角三角形△ABC中,AB=AC=4,点P是边AB上异于A,B的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的内心,则AP等于(  )
A.$\frac{4}{3}$B.2$\sqrt{2}$C.2$\sqrt{2}$-2D.4$\sqrt{2}$-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.几何体的三视图如图所示,则该几何体的体积为11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若x≥1,则$\sqrt{x+2\sqrt{x-1}}$+$\sqrt{x-2\sqrt{x-1}}$=$\left\{\begin{array}{l}2,x∈[1,2]\\ 2\sqrt{x-1},x∈(2,+∞)\end{array}\right.$.

查看答案和解析>>

同步练习册答案