分析 先令p(x)=f(x)-f2(x)=(a-$\frac{1}{2}$)x2-2ax+lnx<0,对x∈(1,+∞)恒成立,利用导数求出p(x)在区间(1,+∞)上是减函数,从而得出:要使p(x)<0在此区间上恒成立,只须满足p(1)=-a-$\frac{1}{2}$≤0,由此解得a的范围即可.
解答 解:令$p(x)=f(x)-{f_2}(x)=(a-\frac{1}{2}){x^2}-2ax+lnx$<0,对x∈(1,+∞)恒成立,
因为$p'(x)=(2a-1)x-2a+\frac{1}{x}=\frac{{(2a-1){x^2}-2ax+1}}{x}=\frac{(x-1)[(2a-1)x-1]}{x}$(*)
令p′(x)=0,得极值点x1=1,${x_2}=\frac{1}{2a-1}$,
①当$\frac{1}{2}<a<1$时,有x2>x1=1,即$\frac{1}{2}<a<1$时,在(x2,+∞)上有p′(x)>0,
此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;
②当a≥1时,有x2<x1=1,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;
③当$a≤\frac{1}{2}$时,有2a-1≤0,此时在区间(1,+∞)上恒有p′(x)<0,
从而p(x)在区间(1,+∞)上是减函数;
要使p(x)<0在此区间上恒成立,只须满足$p(1)=-a-\frac{1}{2}≤0$$⇒a≥-\frac{1}{2}$,
所以$-\frac{1}{2}≤a≤\frac{1}{2}$.
综上可知a的范围是$[{-\frac{1}{2},\frac{1}{2}}]$.
点评 本题主要考查不等式恒成立问题,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4}{3}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{2}$-2 | D. | 4$\sqrt{2}$-4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com