精英家教网 > 高中数学 > 题目详情
如图,圆O和圆O'相交于A,B两点,AC是圆O'的切线,AD是圆O的切线,若BC=2,AB=4,则BD=   
【答案】分析:由AC是圆O'的切线,AD是圆O的切线,利用圆的弦切角等于所夹弧所对的圆周角,得到三角形ABC与三角形ABD相似,由相似得到三角形的对应边成比例得到一个关系式,把BC和AB的值代入关系式即可求出BD的值.
解答:解:因为AC是圆O′的切线,
∴∠CAB=∠D,
∵AD是圆O的切线,
∴∠BAD=∠C,
∴△ABC∽△DBA,
=,又BC=2,AB=4,
∴BD==8
故答案为:8
点评:此题考查学生灵活运用弦切角定理以及三角形相似对应边成比例化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;
(Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;
(Ⅱ)求切线长|PA|的最小值;
(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城二模)如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成.两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为r1=13; 圆弧C2过点A(29,0).
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=
30
PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

       已知圆O:x2+y2=1,圆C:(x-4)2+(y-4)2=1,由两圆外一点P(a,b)引两圆切线PA、PB,切点分别为A、B,如图,满足|PA|=|PB|;

       (Ⅰ)将两圆方程相减可得一直线方程l:x+y-4=0,该直线叫做这两圆的“根轴”,试证点P落在根轴上;

       (Ⅱ)求切线长|PA|的最小值;

(Ⅲ)给出定点M(0,2),设P、Q分别为直线l和圆O上动点,求|MP|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省苏州市高三(上)期初数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成.两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为r1=13; 圆弧C2过点A(29,0).
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省盐城市高考数学二模试卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成.两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为r1=13; 圆弧C2过点A(29,0).
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

查看答案和解析>>

同步练习册答案