精英家教网 > 高中数学 > 题目详情

【题目】自湖北武汉爆发新型冠状病毒肺炎疫情以来,各地医疗物资缺乏,各生产企业纷纷加班加点生产,某企业准备购买三台口罩生产设备,型号分别为ABC,已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元;也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应同时购买的易耗品的件数,该单位调查了这三种型号的设备各60台,调查每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.

每台设备一个月中使用的易耗品的件数

6

7

8

频数

型号A

30

30

0

型号B

20

30

10

型号C

0

45

15

将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.

1)求该单位一个月中ABC三台设备使用的易耗品总数超过21件(不包括21件)的概率;

2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?

【答案】1;(2)该单位在购买设备时应同时购买21件易耗品

【解析】

(1)由题中表格数据,分别求出三个型号设备在一个月使用易耗品的件数所对应的频率,设该单位三台设备在一个月中使用的易耗品的总件数为X,可知,分别求出,即可求出答案;

2)分别求出两种情况下,一个月购买易耗品所需总费用的所有可能值,并求出对应的概率,从而可求出两种情况的期望,比较二者大小,可得出结论.

(1)由题中表格可知,

A型号的设备一个月中使用易耗品的件数为67的频率均为

B型号的设备一个月中使用易耗品的件数为678的频率分别为

C型号的设备一个月中使用易耗品的件数为78的频率分别为

设该单位一个月中ABC三台设备使用易耗品的件数分别为xyz,则

设该单位三台设备一个月中使用的易耗品的总件数为X

即该单位一个月中ABC三台设备使用的易耗品总数超过21件的概率为

2)该单位三台设备一个月中使用的易耗品的总件数为X,可能的取值为1920212223

由(1)知,

若该单位在购买设备的同时购买了20件易耗品,设该单位一个月中购买易耗品所需的总费用为元,

的所有可能取值为2000220024002600

所以

若该单位在购买设备的同时购买了21件易耗品,设该单位一个月中购买易耗品所需的总费用为Z元,

Z的所有可能取值为210023002500

所以

因为,即,所以该单位在购买设备时应同时购买21件易耗品.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,都有成立,求的取值范围;

(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:①设,则“”是“”的充分不必要条件;②若,则,使得;③为等比数列,则“”是“”的充分不必要条件;④命题“,使得”的否定形式是“,使得 .其中正确说法的个数为( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,是等边三角形,底面是直角梯形,分别是的中点.

1)①求证:平面

②求线段的长度;

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足时,

1)当时,求数列的前项和

2)当时,求证:对任意为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自湖北武汉爆发新型冠状病毒肺炎疫情以来,各地医疗物资缺乏,各生产企业纷纷加班加点生产,某企业准备购买三台口罩生产设备,型号分别为ABC,已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元;也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应同时购买的易耗品的件数,该单位调查了这三种型号的设备各60台,调查每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.

每台设备一个月中使用的易耗品的件数

6

7

8

频数

型号A

30

30

0

型号B

20

30

10

型号C

0

45

15

将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.

1)求该单位一个月中ABC三台设备使用的易耗品总数超过21件(不包括21件)的概率;

2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f1(x)=x2f2(x)=alnx(其中a>0).

(1)求函数f(x)=f1(xf2(x)的极值;

(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(,e)内有两个零点,求正实数a的取值范围;

(3)求证:当x>0时,.(说明:e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与上、下顶点构成直角三角形,以椭圆的长轴长为直径的圆与直线相切.

(1)求椭圆的标准方程;

(2)设过椭圆右焦点且不平行于轴的动直线与椭圆相交于两点,探究在轴上是否存在定点,使得为定值?若存在,试求出定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的菱形,都垂直于平面,且.

1)证明:平面

2)若,求三棱锥的体积.

查看答案和解析>>

同步练习册答案