精英家教网 > 高中数学 > 题目详情

【题目】如图,公园有一块边长为2的等边ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,DAB上,EAC.

1)设ADxx≥1),EDy,求用x表示y的函数关系式;

2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.

【答案】1y1≤x≤2);(2证明见解析

【解析】试题分析:()先根据三角形面积求出AE,即,再根据余弦定理,最后根据边长限制条件确定定义域: )由基本不等式可得当且仅当取最小值,由对勾函数值,当且仅当取最大值.

试题解析:(1)在中,

代入

2)如果是水管

当且仅当,即“=”成立,故,且.

如果是参观线路,记

可知函数在上递减,在上递增,

.

中线或中线时, 最长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若 的平均数为3,标准差为4,且 ,则新数据 的平均数和标准差分别为( )
A.-9 12
B.-9 36
C.3 36
D.-3 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知内角的角平分线.

(1)用正弦定理证明:

2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在甲、乙两个电视台做总时间不超过 300 分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为分钟和分钟.

(Ⅰ)用列出满足条件的数学关系式,并画出相应的平面区域;

(Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

I)若,求曲线在点处的切线方程.

II)若,求函数的单调区间.

III)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于不同两点 为坐标原点.

1)求抛物线的焦点到准线的距离;

2)若直线又与圆相切于点,且为线段的中点,求直线的方程;

3)若,点在线段上,满足,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点M(﹣2,﹣1),离心率为.过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q.

(Ⅰ)求椭圆C的方程;

(Ⅱ)试判断直线PQ的斜率是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为正三角形, , 为棱的中点.

(1)求证:平面平面;

(2)若直线与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】供电部门对某社区位居民201611月份人均用电情况进行统计后,按人均用电量分为 五组,整理得到如下的频率分布直方图,则下列说法错误的是(

A. 11月份人均用电量人数最多的一组有

B. 11月份人均用电量不低于度的有

C. 11月份人均用电量为

D. 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为

查看答案和解析>>

同步练习册答案