精英家教网 > 高中数学 > 题目详情

已知数列{}中, ,,
(1)求证数列{}为等比数列.
(2)判断265是否是数列{}中的项,若是,指出是第几项,并求出该项以前所有项的和(不含265),若不是,说明理由.

(1) 详见解析;(2) 265是数列中的第9项。

解析试题分析:(1) 根据等比数列的定义证明 为常数即可。(2)由(1)可得数列的通项公式,从而可得,解,解得若为正整数,说明265是中的项;否则不是数列中的项。
(1)证明由

  
{}是以1为首项,以2为公比的等比数列.           6分
(2).由(1)知,.           8分
265是数列中的第9项.(原因是 是递增数列,265是奇数,它只能为中的奇数项,又2 猜想是第9 项,经验证符合猜想,不写原因不扣分) 9分
                     12分
考点:1等比数列的定义;2等比数列的通项公式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,a1=2.当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求证:{Sn+1}是等比数列;
(2)求数列{nan}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:,其中为实数,为正整数.
(1)对任意实数,求证:不成等比数列;
(2)试判断数列是否为等比数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3
(Ⅱ)求证:对k≥3有0≤ak

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量万吨.
(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列,求相邻两年主要污染物排放总量的关系式;
(2)证明:数列是等比数列;
(3)若该市始终不需要采取紧急限排措施,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)已知等比数列{an}满足:|a2﹣a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校餐厅每天供应500名学生用餐,每星期一有A, B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A种菜的有200人,那么第10个星期一选A种菜的大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列{an}中,a2a3=32,a5=32.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

等比数列中,是前项和,且,则公比    

查看答案和解析>>

同步练习册答案