精英家教网 > 高中数学 > 题目详情
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=
3

(1)求证:平面ACD⊥平面PAC;
(2)求异面直线PC与BD所成角的余弦值;
(3)设二面角A-PC-B的大小为θ,试求tanθ的值.
证明:(1)∵PA⊥面ABCD,
PA?平面PAC
∴平面ACD⊥平面PAC;
(2)令AC与BD交点为O,PA的中点为E,连接OE,BE如图所示:

∵O为BD的中点,则EO=
1
2
PC=
1
2
PA2+AC2
=
7
2
,且OEPC
又∵PA⊥面ABCD,且PA=AD=2,AB=1,AC=
3

∴OB=
1
2
BD=
5
2
,BE=
2

∴|cos∠EOB|=|
OE2+OB2-BE2
2OE•OB
|
=
3
7

即异面直线PC与BD所成角的余弦值为
3
7

(3)过A作AE⊥PC交PC于E,过E作EF⊥PC交PB于F,连接AE.则二面角A-PC-B的平面角为∠AEF即∠AEF=θ.
在Rt△APC中,PC=
7
,∴AE=
AP•AC
PC
=
2
3
7
,PE=
PA2-AE2
=
4
7

在△PBC中,PB=
5
,BC=2,∴cos∠BPC=
PC2+PB2-BC2
2PC•PB
=
4
35

在Rt△PEF中,tan∠EPF=
19
4
,∴EF=PE•tan∠EPF=
19
7

在△PAF中,PF=
PE2+EF2
=
5
,cos∠FPA=
PA
PB
=
2
5
,∴AF=1,
在△AEF中,cosθ=
2
3
19
,∴tanθ=
21
6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是菱形,且∠DAB=60°,侧面PAD为正三角形,其所在的平面垂直于底面ABCD,求证:AD⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆周上的一点.
(1)求证:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=
2
BB1
.求证:
(1)平面A1EC平面AB1D;
(2)平面A1BC1⊥平面AB1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2
2
,侧棱长为4,E、F分别是棱AB,BC的中点,EF与BD相交于G.
(1)求证:平面EFB1⊥平面BDD1B1
(2)求点B到平面B1EF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面α,β,γ,且平面α平面β,平面α⊥平面γ;
求证:平面β⊥平面γ

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形ABCD所在平面与正三角形PAD所在平面互相垂直,M,Q分别为PC,AD的中点,
(1)求四棱锥P-ABCD的体积;
(2)求证:PA平面MBD;
(3)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A(1,0,2),B(1,-3,1),点M在y轴上且到A、B两点的距离相等,则M点坐标为(  )
A.(-1,0,0)B.(0,-1,0)C.(0,0,1)D.(0,1,0)

查看答案和解析>>

同步练习册答案