精英家教网 > 高中数学 > 题目详情

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是________.

(-∞?1)∪(3,+∞)
分析:把二次函数的恒成立问题转化为y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,再利用一次函数函数值恒大于0所满足的条件即可求出x的取值范围.
解答:原问题可转化为关于a的一次函数y=a(x-2)+x2-4x+4>0在a∈[-1,1]上恒成立,
只需??x<1或x>3.
故答案为:(-∞?1)∪(3,+∞).
点评:此题是一道常见的题型,把关于x的函数转化为关于a的函数,构造一次函数,因为一次函数是单调函数易于求解,最此类恒成立题要注意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是
(-∞?1)∪(3,+∞)
(-∞?1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省淮安市盱眙县新马高级中学高三(上)期末数学试卷(解析版) 题型:填空题

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中等六校联考高三(上)12月月考数学试卷(理科)(解析版) 题型:填空题

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2007年江苏省南通市数学学科基地高考数学回扣课本基础训练试卷(解析版) 题型:解答题

若对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是   

查看答案和解析>>

同步练习册答案