精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若在上至少存在一点,使得成立,求的范围.
(Ⅰ)上单调递减,在上单调递增;(Ⅱ)的取值范围为

试题分析:(Ⅰ)对求导来判断单调区间;(Ⅱ)在上至少存在一点,使得成立,即不等式上有解,原不等式整理得:),转化为求的最小值问题.
试题解析:(Ⅰ)解:,解得:上单调递减,在上单调递增;
(Ⅱ),在上至少存在一点,使得成立,即:不等式有解,也即:)有解,记,则,令单调递增,,即上恒成立,因此,在,在,即单调递减,在单调递增,,所以,的取值范围为
方法二:令,则

①当时,上为增函数,在上为减函数,由题意可知
②当时,上为增函数,在上为减函数,,由题意可知
③当时,上为增函数,在上为减函数,,由题意可知恒成立,此时不合题意.
综上所述,的取值范围为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若在区间[0,2]上恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(I)当时,求函数的单调区间;
(II)当时, 若,使得, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在区间)上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足的导函数,已知函数的图象如图所示.若两正数满足,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数满足,且的导函数上恒有,则不等式的解集为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的定义域为恒成立,,则解集为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数y=f(x),x∈R的导函数为,且,则下列成立的是(  )
A.f(0)<e?1f(1)<e2f(2)B.e2f(2)< f(0)<e?1f(1)
C.e2f(2)<e?1f(1)<f(0)D.e?1f(1)<f(0)<e2f(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的解析式及减区间;
(2)若的最小值。

查看答案和解析>>

同步练习册答案