【题目】过点A(3,-1)且在两坐标轴上截距的绝对值相等的直线有____条,方程为:_____
【答案】 3 、、
【解析】
本题分三种情况讨论:①截距不为0,且截距相等,设出截距,利用截距式表示直线方程,将点P代入直线方程,即可求出参数值,将参数值待入直线方程再化简,即可求出方程;
②截距不为0,且截距互为相反数,设出截距,利用截距式表示直线方程,将点P代入直线方程,即可求出参数值,将参数值待入直线方程再化简,即可求出方程;
③当截距为0时,设相应的直线方程,代入点P坐标,求解即可.
①当截距不为0,且截距相等时,设直线的截距为a,则直线方程为:,将点P坐标代入直线方程,解得:,所以直线方程为:;
②当截距不为0,且截距互为相反数时,设直线的横截距为a,则纵截距为-a,则直线方程为:,将点P坐标代入直线方程,解得:,所以直线方程为:;
③当截距为0时,设直线方程为:,代入点P,可得:,
直线方程为:,故直线有3条.
科目:高中数学 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn=
(1)求证:数列{ }为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,过椭圆的上顶点和右顶点的直线与原点的距离为,
(1)求椭圆的方程;
(2)是否存在直线经过椭圆左焦点与椭圆交于,两点,使得以线段为直径的圆恰好经过坐标原点?若存在,求出直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示(网格纸上正方形的边长为1),则该“堑堵”的表面积为( )
A. 8 B. 16+8 C. 16+16 D. 24+16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱柱ABCD﹣A1B1C1D1的底面是边长为2的菱形,且∠BAD= ,AA1⊥平面ABCD,AA1=1,设E为CD中点
(1)求证:D1E⊥平面BEC1
(2)点F在线段A1B1上,且AF∥平面BEC1 , 求平面ADF和平面BEC1所成锐角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.
(1)请估计学校1800名学生中,成绩属于第四组的人数;
(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;
(3)请根据频率分布直方图,求样本数据的众数、平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(Ⅰ)当时,解不等式;
(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;
(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com