精英家教网 > 高中数学 > 题目详情

【题目】一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,则称这个数为质数.质数的个数是无穷的.设由所有质数组成的无穷递增数列的前项和为,等差数列1,3,5,7,…中所有不大于的项的和为

(Ⅰ)求

(Ⅱ)判断的大小,不用证明;

(Ⅲ)设,求证:,使得

【答案】(Ⅰ)11,36 (Ⅱ)见解析;(Ⅲ)见解析.

【解析】

(Ⅰ)由题意直接求得p5f(5);

(Ⅱ)分别取n=1,2,3,4,5.求得Snfn),比较大小得结论;

(Ⅲ)取值验证n≤4时,命题成立.当n≥5时,设k是使得k2Sn成立的最大自然数,只需证(k+1)2Sn+1.可得1+3+5+…+(2k﹣1),fn)=1+3+5+…+pn,结合(Ⅱ)可知,当n≥5时,Snfn),得到pn>2k﹣1,从而pn+1>2k+1.进一步得到

(Ⅰ)

(Ⅱ)当时,

时,

时,

时,

所以当时,

时,

不难看出,当时,

(Ⅲ)因为

所以当时,,使得

时,,使得

时,,使得

时,,使得

所以时,命题成立.

时,设是使得成立的最大自然数,只需证

因为

由(Ⅱ)可知,当时,

所以,从而

所以,即

综上可知,命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.

I)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.

II)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?

非手机迷

手机迷

合计

合计

附:随机变量(其中为样本总量).

参考数据

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式,方式一:周一到周五每天培训1小时,周日测试;方式二:周六一天培训4小时,周日测试.公司有多个班组,每个班组60人,现任选两组(记为甲组、乙组)先培训,甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如下表,其中第一、二周达标的员工评为优秀.

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

(1)在甲组内任选两人,求恰有一人优秀的概率;

(2)每个员工技能测试是否达标相互独立,以频率作为概率.

(i)设公司员工在方式一、二下的受训时间分别为,求的分布列,若选平均受训时间少的,则公司应选哪种培训方式?

(ii)按(i)中所选方式从公司任选两人,求恰有一人优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数图象上不同两点处的切线的斜率分别是,规定为线段的长度)叫做曲线在点与点之间的“弯曲度”,给出以下命题:

①函数图象上两点的横坐标分别为,则

②存在这样的函数,其图象上任意不同两点之间的“弯曲度”为常数;

③设,是抛物线上不同的两点,则

④设, 是曲线是自然对数的底数)上不同的两点,则

其中真命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若对任意恒成立,求的取值范围;

2,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为的样本,得到一周参加社区服务的时间的统计数据好下表:

超过1小时

不超过1小时

20

8

12

m

(Ⅰ)求

(Ⅱ)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?

(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )

A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP总量不超过4000亿元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正五边形的对角线分别与对角线交于点,对角线分别与对角线交于点,对角线与对角线交于点. 设由图2中的10个点和线段构成的等腰三角形的集合为.

(1)求中元素的数目;

(2)若将这10个点中的每个点任意染为红、蓝两种颜色之一,问是否一定存在中的一个等腰三角形,其三个顶点同色?

(3)若将这10个点中的任意个点染为红色,使得一定存在中的一个等腰三角形,其三个顶点同为红色,求的最小值.

查看答案和解析>>

同步练习册答案