精英家教网 > 高中数学 > 题目详情

【题目】如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线点,已知米,米.

(1)要使矩形的面积大于50平方米,则的长应在什么范围?

(2)当的长为多少米时,矩形花坛的面积最小?并求出最小值.

【答案】(1) (2) 的长为4米时,矩形的面积最小,最小值为48平方米.

【解析】

1)设,则,利用平行线分线段成比例可表示出,则,利用,解不等式求得结果;(2)由(1)知,利用基本不等式求得最小值,同时确定等号成立条件求得.

(1)设的长为米,则

由矩形的面积大于得:

,得:,解得:

长的取值范围为:

(2)由(1)知:矩形花坛的面积为:

当且仅当,即时,矩形花坛的面积取得最小值

的长为米时,矩形的面积最小,最小值为平方米

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月11时的平均气温低于乙地该月11时的平均气温
②甲地该月11时的平均气温高于乙地该月11时的平均气温
③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差
④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差
其中根据茎叶图能得到的正确结论的编号为(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ACBD(图①)中,△ABC与△ABD均为直角三角形且有公共斜边AB,设AB=2,∠BAD=30°,∠BAC=45°,将△ABC沿AB折起,构成如图②所示的三棱锥C′﹣ABC,且使
(Ⅰ)求证:平面C′AB⊥平面DAB;
(Ⅱ)求二面角A﹣C′D﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165)……,第八组[190.195],下图是按上述分组方法得到的频率分布直方图.

1)求第七组的频数;

(2)试估计这所学校高三年级800名学生中身高在180cm以上(180cm)的人数为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出s的值为11,那么输入的n值等于(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的条件下,若△ABC的面积为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程式是参数.以坐标原点为极点,轴的正半轴为极轴,且取相同的长度单位建立极坐标系,圆的极坐标方程为

1求直线的普通方程与圆的直角坐标方程;

2设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东莞市摄影协会准备在201910月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:

1)求频率分布直方图中的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);

2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会.

①在答题卡上的统计表中填出每组相应抽取的人数:

年龄

人数

②若从年龄在的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若都是从集合中任取的一个数,求函数有零点的概率;

(2)若都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

同步练习册答案