精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(t∈R)在[1,2]上的最小值为,P1(x1,y1),P2(x2,y2)是函数f(x)=图象上不同两点,且线段P1P2的中点P的横坐标为.

(1)求t的值;

(2)求证:点P的纵坐标是定值;

(3)若数列{an}的通项公式为an=f()(m∈N*,n=1,2,…,m),求数列{an}的前m项和Sm.

(1)解:当t>0时,f(x)在[1,2]上单调递减,又f(x)的最小值为,∴f(2)=,得t=1.

当t<0时,f(x)在[1,2]上单调递增,又f(x)的最小值为,∴f(1)=,得t=2(舍去);

当t=0时,f(x)=(舍去),∴t=1,f(x)=.

(2)证明:∵xP=,∴x1+x2=1.

而y1+y2=+==

==.∴y1+y2=,即P点的纵坐标为定值.

(3)解:由(2)可知,f(x)+f(1-x)=,∴f()+f(1)=(1≤n≤m-1),即f()+f()=,

∴an+am-n=.而am=f(1)=,

由Sm=a1+a2+a3+…+am-1+am,①得Sm=am-1+am-2+am-3+…+a1+am,②

由①+②,得2Sm=(m-1)×+2am=+2×=.∴Sm=(3m-1)(m∈N*).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案