精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,求函数的极值和单调区间;

(2)若在区间上至少存在一点,使得成立,求实数的取值范围.

【答案】(1时, 有极小值为的单调递增区间为,单调递减区间为

2.

【解析】试题分析:(1)求函数的导数,令导数等于零,解方程,再求出函数的导数和驻点,然后列表讨论,求函数的单调区间和极值;(2)若在区间上存在一点,使得成立,其充要条件是在区间上的最小值小于即可.利用导数研究函数在闭区间上的最小值,先求出导函数,然后讨论研究函数在上的单调性,将的各极值与其端点的函数值比较,其中最小的一个就是最小值.

试题解析:(1)当

,得

的定义域为,由,由,得

所以时, 有极小值为

的单调递增区间为,单调递减区间为.

2,且,令,得到.若在区间上存在一点,使得成立,即在区间上的最小值小于

,即时, 恒成立,即在区间上单调递减,

在区间上的最小值为

,得,即.

,即时,

,则成立,所以在区间上单调递减,

在区间上的最小值为

显然, 在区间上的最小值小于不成立.

,即时,则有

所以在区间上的最小值为

,得,解得,即

综上,由①②可知:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为( )

A. 3600 B. 1080 C. 1440 D. 2520

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1上是单调函数,求实数取值范围.

2)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论函数的单调性;

(2)如果对于任意的,都有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数上的最小值;

(Ⅱ)设函数,若函数的零点有且只有一个,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额。此项税款按下表分段累计计算:

全月应纳税所得额

税率(%)

不超过1500元的部分

3

超过1500元至4500元的部分

10

超过4500元至9000元的部分

20

(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?

(2)假设某人的月收入为元, ,记他应纳税为元,求的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:


82

82

79

95

87


95

75

80

90

85

1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;

2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·

乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.

(Ⅰ)求实数的值;

(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,有以下结论:

时,甲走在最前面;

时,乙走在最前面;

,丁走在最前面,当时,丁走在最后面;

丙不可能走在最前面,也不可能走在最后面;

如果它们一直运动下去,最终走在最前面的是甲.

其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分).

查看答案和解析>>

同步练习册答案