精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知两定点,动点满足.

1)求动点的轨迹的方程;

2)轨迹上有两点,它们关于直线对称,且满足,求的面积.

【答案】(1)动点的轨迹是圆,其方程为(2)

【解析】

1)设动点的坐标为表示出化简可得.
2)根据对称,由垂径定理可得圆心在直线上,即可求出直线的方程,易知垂直于直线,且.的中点为,则,计算可得的值,即可求出的面积.

1)设动点的坐标为,则.

整理得,故动点的轨迹是圆,且方程为.

2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点关于直线对称,由垂径定理可得圆心在直线上,代入并求得,故直线的方程为.

易知垂直于直线,且.

的中点为,则

,又.

,∴.

易知,故的距离等于,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)求过点且与抛物线的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间内,按分成6组,其频率分布直方图如图所示.

(1)估计该社区居民最近一年来网购消费金额的中位数;

(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的列联表,并判断有多大把握认为“网购迷与性别有关系”;

合计

网购迷

20

非网购迷

45

合计

100

(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不. 影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:

网购总次数

支付宝支付次数

银行卡支付次数

微信支付次数

80

40

16

24

90

60

18

12

将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为,求的数学期望.

附:观测值公式:

临界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率

(1)求椭圆方程;

(2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,,点分别为棱的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体中,是棱的中点,是侧面上的动点,且平面,记的轨迹构成的平面为

,使得

②直线与直线所成角的正切值的取值范围是

与平面所成锐二面角的正切值为

④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.

其中正确命题的序号是________.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆周率是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有个人说“能”,而有个人说“不能”,那么应用你学过的知识可算得圆周率的近似值为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为t为参数),曲线C2的参数方程为α为参数),以坐标原点为极点.x轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C1的普通方程和曲线C2的极坐标方程;

(Ⅱ)射线与曲线C2交于OP两点,射线与曲线C1交于点Q,若△OPQ的面积为1,求|OP|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1中,AA1⊥平面ABC,∠BAC90°,ABBC2DE分别为AA1B1C的中点.

1)证明:DE⊥平面BCC1B1

2)若直线BE与平面AA1B1B所成角为30°,求二面角CBDE的大小.

查看答案和解析>>

同步练习册答案