精英家教网 > 高中数学 > 题目详情

【题目】己知两点,动点Py轴上的摄影是H,且

(1)求动点P的轨迹方程;

(2)设直线的两个斜率存在,分别记为,若,求点P的坐标;

(3)若经过点的直线l与动点P的轨迹有两个交点为TQ,当时,求直线l的方程.

【答案】1

2)点或P

3

【解析】

(1)设,则,表示出的坐标,代入后化简,即可求出所求;

(2)由(1)可知点坐标设为,由两点间的斜率公式求得,并代入化简,再与(1)所得的轨迹方程联立,即可求解出点坐标;

(3)设出,再设出直线的方程的点斜式,让其与动点的轨迹方程联立化简得一个含斜率的一元二次方程,由韦达定理写出根与系数的关系,结合两点间的距离公式化简,进而求出直线的斜率,得到直线的方程.

(1)设,则,又

,∴所以动点P的轨迹方程为

(2)由题意得:,所以,即

又由(1)可得,所以解得

即点或P

(3)设直线方程,联立方程组

计算恒成立

,所以

所以

,解得

直线l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

对于各项均为整数的数列,如果(=123…)为完全平方数,则称数

具有性质

不论数列是否具有性质,如果存在与不是同一数列的,且

时满足下面两个条件:的一个排列;数列具有性质,则称数列具有变换性质

I)设数列的前项和,证明数列具有性质

II)试判断数列12345和数列12311是否具有变换性质,具有此性质的数列请写出相应的数列,不具此性质的说明理由;

III)对于有限项数列123,某人已经验证当时,

数列具有变换性质,试证明:当时,数列也具有变换性质

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的离心率 ,直线 被以椭圆 的短轴为直径的圆截得的弦长为 .

(1)求椭圆 的方程;

(2)过点 的直线 交椭圆于 两个不同的点,且 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别是,且椭圆经过点.

1)求椭圆的标准方程;

2)当取何值时,直线与椭圆有两个公共点;只有一个公共点;没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是不小于3的正整数,集合,对于集合中任意两个元素.

定义1:.

定义2:若,则称互为相反元素,记作,或.

(Ⅰ)若,试写出,以及的值;

(Ⅱ)若,证明:

(Ⅲ)设是小于的正奇数,至少含有两个元素的集合,且对于集合中任意两个不相同的元素,都有,试求集合中元素个数的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex+1-alnax+aa>0).

(1)当a=1时,求曲线y=fx)在点(1,f(1))处的切线方程;

(2)若关于x的不等式fx)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求函数的极值;

(2),对于任意,总有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案