精英家教网 > 高中数学 > 题目详情

求证:正四面体ABCD中相对的两棱(即异面的两棱)互相垂直.

证明:因为ABCD是正四面体,
各个面都是等边三角形,
取BC的中点E
∴AE⊥BC,DE⊥BC
∴BC⊥平面AED,
而AD?平面AED,
∴BC⊥AD,
同理可证AB⊥DC,AC⊥DB.
分析:因为ABCD是正四面体,各个面都是等边三角形,取BC的中点E,则有AE⊥BC,DE⊥BC,从而有BC⊥平面AED,易得结论.
点评:本题主要考查正四面体的结构特征,主要涉及了线线垂直,线面垂直的转化,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正四面体P-ABC中,D,E,F分别是AB、BC、CA的中点,求证:
(1)BC∥平面PDF;   (2)BC⊥平面PAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是各棱长均为a的斜三棱柱ABC-A1B1C1,∠A1AC=∠A1AB=60°.求证:三棱锥A1-ABC是正四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正四面体ABCD的棱长为3cm.
(1)求证:AD⊥BC;
(2)已知点E是CD的中点,点P在△ABC的内部及边界上运动,且满足EP∥平面ABD,试求点P的轨迹;
(3)有一个小虫从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,当它爬了12cm之后,求恰好回到A点的概率.

查看答案和解析>>

科目:高中数学 来源:2014届广东实验中学高二上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分14分)

如图,P-ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF∥底面ABC, 且棱台DEF-ABC与棱锥P-ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)

(1)求证:P-ABC为正四面体;

(2)棱PA上是否存在一点M,使得BM与面ABC所成的角为45°?若存在,求出点M的位置;若不存在,请说明理由。

(3)设棱台DEF-ABC的体积为V=, 是否存在体积为V且各棱长均相等的平行六面体,使得它与棱台DEF-ABC有相同的棱长和,并且该平行六面体的一条侧棱与底面两条棱所成的角均为60°? 若存在,请具体构造出这样的一个平行六面体,并给出证明;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:湖南省长沙市2009-2010学年度高一第二次单元考试 题型:选择题

((8分)在正四面体P—ABC中,D,E,F分别是AB BC CA的中点,求证:

(1)BC∥平面PDF;   (2)BC⊥平面PAE

 

查看答案和解析>>

同步练习册答案