精英家教网 > 高中数学 > 题目详情
精英家教网如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:平面MAP⊥平面SAC.
(2)求二面角M-AC-B的平面角的正切值.
分析:(1)欲证面MAP⊥面SAC,根据面面垂直的判定定理可知在平面MAP内一直线与平面SAC垂直,根据线面垂直的判定定理可知BC⊥平面SAC,
而PM∥BC,从而PM⊥面SAC,满足定理所需条件;
(2)易证面MAP⊥面SAC,则AC⊥CM,AC⊥CB,从而∠MCB为二面角M-AC-B的平面角,过点M作MN⊥CB于N点,连接AN,在△CAN中,由勾股定理求得AN,在Rt△AMN中求出MN,在Rt△CNM中,求出此角即可.
解答:精英家教网证明:(1)∵SC⊥平面ABC,SC⊥BC,又∵∠ACB=90°
∴AC⊥BC,AC∩SC=C,BC⊥平面SAC,
又∵P,M是SC、SB的中点
∴PM∥BC,PM⊥面SAC,∴面MAP⊥面SAC,(5分)
(2)∵AC⊥平面SAC,∴面MAP⊥面SAC.(3分)
∴AC⊥CM,AC⊥CB,从而∠MCB为二面角M-AC-B的平面角,
∵直线AM与直线PC所成的角为60°
∴过点M作MN⊥CB于N点,连接AN,
则∠AMN=60°在△CAN中,由勾股定理得AN=
2

在Rt△AMN中,AM=
AN
tan∠AMN
=
2
3
3
=
6
3

在Rt△CNM中,tan∠MCN=
MN
CN
=
MN
CN
=
6
3
1
=
6
3

故二面角M-AC-B的正切值为
6
3
.(5分)
点评:本题考查平面与平面垂直的判定,二面角及其度量,考查空间想象能力,逻辑思维能力,计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求证:AB⊥BC;
(2)若设二面角S-BC-A为45°,SA=BC,求二面角A-SC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,在三棱锥S-ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

同步练习册答案