【题目】设f(x)=cos2x﹣ sin2x,把y=f(x)的图象向左平移φ(φ>0)个单位后,恰好得到函数g(x)=﹣cos2x﹣ sin2x的图象,则φ的值可以为( )
A.
B.
C.
D.
【答案】A
【解析】解:∵f(x)=cos2x﹣ sin2x=2( cos2x﹣ sin2x)=2sin(φ ﹣2x)=﹣2sin(2x﹣ ),
g(x)=﹣cos2x﹣ sin2x=﹣2( cos2x+ sin2x)=﹣2sin(2x+ ),
∴把y=f(x)的图象向左平移φ(φ>0)个单位后,可得:﹣2sin[2(x+φ)﹣ ]=﹣2sin(2x+ ),
∴解得:2(x+φ)﹣ =2x+ +2kπ,k∈Z,即有:φ=k ,k∈Z
∴当k=0时,φ= ,
故选:A.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
科目:高中数学 来源: 题型:
【题目】某地区交管部门为了对该地区驾驶员的某项考试成绩进行分析,随机抽取了15分到45分之间的1000名学员的成绩,并根据这1000名驾驶员的成绩画出样本的频率分布直方图(如图),则成绩在[30,35)内的驾驶员人数共有( )
A.60
B.180
C.300
D.360
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线: 与抛物线交于, 两点,记抛物线在, 两点处的切线, 的交点为.
(I)求证: ;
(II)求点的坐标(用, 表示);
(Ⅲ)若,求△的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内圆心为的圆的方程为,点是圆上的动点,点是平面内任意一点,若线段的垂直平分线交直线于点,则点的轨迹可能是_________.(请将下列符合条件的序号都填入横线上)
①椭圆;②双曲线;③抛物线;④圆;⑤直线;⑥一个点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高三年级期中考试的学生中随机统计了40名学生的政治成绩,这40名学生的成绩全部在40分至100分之间,据此绘制了如图所示的样本频率分布直方图.
(1)求成绩在[80,90)的学生人数;
(2)从成绩大于等于80分的学生中随机选2名学生,求至少有1 名学生成绩在[90,100]的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是( )
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示.若数列{an}是公差不为0的等差数列,设集合A={a1 , a2 , a3 , …,a2016},则L(A)= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com