精英家教网 > 高中数学 > 题目详情
12.已知tan$\frac{π}{12}$=a,则sin$\frac{61π}{12}$=(  )
A.-$\frac{1}{\sqrt{1+{a}^{2}}}$B.$\frac{1}{\sqrt{1+{a}^{2}}}$C.$\frac{a}{\sqrt{1+{a}^{2}}}$D.-$\frac{a}{\sqrt{1+{a}^{2}}}$

分析 由同角三角函数关系式求出$co{s}^{2}\frac{π}{12}$=$\frac{1}{1+{a}^{2}}$,由诱导公式得sin$\frac{61π}{12}$=-sin$\frac{π}{12}$,由此利用同角三角函数关系式能求出结果.

解答 解:∵tan$\frac{π}{12}$=a,
∴sec2$\frac{π}{12}$=1+tan2$\frac{π}{12}$=1+a2
∴$co{s}^{2}\frac{π}{12}$=$\frac{1}{se{c}^{2}\frac{π}{12}}$=$\frac{1}{1+{a}^{2}}$,
∴sin$\frac{61π}{12}$=sin(5$π+\frac{π}{12}$)=-sin$\frac{π}{12}$=-$\sqrt{1-\frac{1}{1+{a}^{2}}}$=-$\frac{a}{\sqrt{1+{a}^{2}}}$.
故选:D.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式和诱导公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,(e是自然常数,e≈2.718),若函数F(x)=f[f(x)]+b有且仅有1个零点,则实数b的取值范围是(  )
A.(-∞,-e)B.(-e,-1)C.(1,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax2-|x|+2a-1(a为实常数).
(1)当a=0时,求不等式f(log2x)+2≥0的解集;
(2)当a<0时,求函数f(x)的最大值;
(3)当a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=7x2-3x+1,则f(x+h)-f(x)等于(  )
A.7h2-hB.14xh-6x+2C.xh+h2+hD.h(14x+7h-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面上四点A,B,C,D,它们的坐标分别为A(-4,0),B(0,4),C(0,0),D(3cosα,3sinα),α∈(0,π).
(Ⅰ)若AB∥CD,求角α的值:
(Ⅱ)若AB⊥CD,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在R上的单调函数f(x)满足f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)求证:f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等差数列{an}中,若:
(1)a5=7,S10=190,求an与Sn
(2)S4=52,S9=252,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}前n项和为Sn,若a1=1,an+an+1=2n-1,则S49=1175;若a1=1,an-1•an=2n(n∈N*),则S2015=3×21008-5;若an+1+(-1)nan=2n-1,则S40=820.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中的假命题是(  )
A.若a<b<0,则$\frac{1}{a}>\frac{1}{b}$B.若$\frac{1}{a}>1$,则0<a<1C.若a>b>0,则a4>b4D.若a<1,则$\frac{1}{a}<1$

查看答案和解析>>

同步练习册答案