A. | $\frac{65}{3}$ | B. | $\frac{\sqrt{65}}{3}$ | C. | $\frac{\sqrt{65}}{6}$ | D. | $\frac{65}{6}$ |
分析 使用向量求出△ABC的面积,O到平面ABC的距离,代入体积公式计算.
解答 解:$\overrightarrow{AB}$=(1,0,-3),$\overrightarrow{AC}$=(5,7,0),∴$\overrightarrow{AB}•\overrightarrow{AC}$=5.|$\overrightarrow{AB}$|=$\sqrt{10}$,|$\overrightarrow{AC}$|=$\sqrt{74}$.
∴cos<$\overrightarrow{AB},\overrightarrow{AC}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}|•|\overrightarrow{AC}|}$=$\frac{5}{\sqrt{740}}$.∴sin<$\overrightarrow{AB},\overrightarrow{AC}$>=$\frac{\sqrt{715}}{\sqrt{740}}$.
∴S△ABC=$\frac{1}{2}$AB•AC•sin<$\overrightarrow{AB},\overrightarrow{AC}$>=$\frac{\sqrt{715}}{2}$.
设平面ABC的法向量为$\overrightarrow{n}$(x,y,z),则$\overrightarrow{n}⊥\overrightarrow{AB}$,$\overrightarrow{n}⊥\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{x-3z=0}\\{5x+7y=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=(3,-$\frac{15}{7}$,1).∴|$\overrightarrow{n}$|=$\frac{\sqrt{715}}{7}$.
$\overrightarrow{OA}$=(1,-2,2),$\overrightarrow{n}•\overrightarrow{OA}$=$\frac{65}{7}$.
∴点O到平面ABC的距离d=$\frac{\overrightarrow{n}•\overrightarrow{OA}}{|\overrightarrow{n}|}$=$\frac{65}{\sqrt{715}}$.
∴V=$\frac{1}{3}$•S△BCD•d=$\frac{1}{3}×$$\frac{\sqrt{715}}{2}$×$\frac{65}{\sqrt{715}}$=$\frac{65}{6}$.
故选:D.
点评 本题考查了平面向量在立体几何中的应用,求出棱锥的高是关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com