精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(x+
π
2
)cosx-sinxcos(π-x)

(1)试判断直线x=
π
8
是否是函数f(x)图象的对称轴,并说明理由;
(2)在△ABC中,若f(A)=1,A∈(0,
π
2
),BC=2,B=
π
3
,求边AC的长.
分析:(1)把f(x)利用诱导公式,二倍角的正弦、余弦公式及特殊角的三角函数值化简得到一个角的正弦函数,代入x=
π
8
函数是否取得最值,即可判断函数是否关于x=
π
8
对称;
(2)根据f(A)=1利用同角三角函数间的基本关系化简得到sinA=cosA即A=
π
4
,然后根据正弦定理即可求出AC的值.
解答:解:(1)由 f(x)=sin(
π
2
+x)cosx-sinxcos(π-x)
得到:
f(x)=cos2x+sinxcosx=
1+ cos2x
2
+
sin2x
2

=
2
2
2
2
cos2x+
2
2
sin2x)+
1
2
=
2
2
sin(2x+
π
4
)+
1
2

x=
π
8
时函数f(x)取得最大值,所以直线x=
π
8
是函数f(x)图象的对称轴;
(2)∵f(A)=cos2A+sinAcosA=1
移项得:sinAcosA=1-cos2A=sin2A,因为A为锐角,所以sinA≠0
∴sinA=cosA,则 A=
π
4

根据正弦定理得:
BC
sinA
=
AC
sinB
AC
sin
π
3
=
2
sin
π
4

所以AC=
3
2
2
2
=
6
点评:考查学生灵活运用诱导公式、二倍角公式、同角三角函数间的基本关系及特殊角的三角函数值化简求值,会利用正弦定理解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(附加题)
(Ⅰ)设非空集合S={x|m≤x≤l}满足:当x∈S时有x2∈S,给出下列四个结论:
①若m=2,则l=4
②若m=-
1
2
,则
1
4
≤l≤1

③若l=
1
2
,则-
2
2
≤m≤0
④若m=1,则S={1},
其中正确的结论为
②③④
②③④

(Ⅱ)已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若对于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,则b的取值范围为
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

将正奇数列{2n-1}中的所有项按每一行比上一行多一项的规则排成如下数表:
记aij是这个数表的第i行第j列的数.例如a43=17
(Ⅰ)  求该数表前5行所有数之和S;
(Ⅱ)2009这个数位于第几行第几列?
(Ⅲ)已知函数f(x)=
3x
3n
(其中x>0),设该数表的第n行的所有数之和为bn
数列{f(bn)}的前n项和为Tn,求证Tn
2009
2010

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)已知函数f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函数f(x)的单调递增区间;
(II)记△ABC的内角A、B、C所对的边长分别为a、b、c若f(A)=
3
2
,△ABC的面积S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知函数f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

同步练习册答案