【题目】已知圆:,圆:,动圆与圆和圆均内切.
(1)求动圆圆心的轨迹的方程;
(2)过点的直线与轨迹交于,两点,过点且垂直于的直线交轨迹于两点,两点,求四边形面积的最小值.
【答案】(1)(2)
【解析】
(1)由两圆位置关系可得,确定圆心的轨迹是以,为焦点,以4为长轴长的椭圆.由此可得轨迹方程;
(2)分类:当直线的斜率不存在或为0时,直接求出面积,当直线的斜率存在且不为0时,不妨设其方程为:,代入曲线的方程,整理后由韦达定理得,由弦长公式求得弦长,同理得,计算面积,利用基本不等式可得最小值.
解:(1)设点坐标为,圆的半径为.则,,
从而.
所以圆心的轨迹是以,为焦点,以4为长轴长的椭圆.
故动圆圆心的轨迹的方程为:.
(2)①当直线的斜率不存在或为0时,此时不妨设,,
此时.
②当直线的斜率存在且不为0时,不妨设其方程为:,,,
联立,
由,,
此时.
同理得:.
故.
当且仅当“”,即时等号成立,又.
故四边形面积的最小值为.
科目:高中数学 来源: 题型:
【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知、分别为椭圆的左、右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于直线于点,线段的中垂线交于点.记点的轨迹为曲线.
(1)求曲线的方程,并说明是什么曲线;
(2)若直线与曲线交于两点、,则在圆上是否存在两点、,使得,?若存在,请求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学兴趣小组为了测量校园外一座“不可到达”建筑物的高度,采用“两次测角法”,并自制了测量工具:将一个量角器放在复印机上放大4倍复印,在中心处绑上一个铅锤,用于测量楼顶仰角(如图);推动自行车来测距(轮子滚动一周为1.753米).该小组在操场上选定A点,此时测量视线和铅锤线之间的夹角在量角器上度数为37°;推动自行车直线后退,轮子滚动了10卷达到B点,此时测量视线和铅锤线之间的夹角在量角器上度数为53°.测量者站立时的“眼高”为1.55m,根据以上数据可计算得该建筑物的高度约为___________米.(精确到0.1)
参考数据:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高三男生的体能达标情况,抽调了120名男生进行立定跳远测试,根据统计数据得到如下的频率分布直方图.若立定跳远成绩落在区间的左侧,则认为该学生属“体能不达标的学生,其中分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).
(1)若该校高三某男生的跳远距离为,试判断该男生是否属于“体能不达标”的学生?
(2)该校利用分层抽样的方法从样本区间中共抽出5人,再从中选出两人进行某体能训练,求选出的两人中恰有一人跳远距离在的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com